• Title/Summary/Keyword: Cyclic Rate

Search Result 765, Processing Time 0.025 seconds

Cooperative Diversity using Cyclic Delay for OFDM systems (OFDM 시스템을 위한 순환 지연을 사용하는 협력 다이버시티 기법)

  • Lee, Dong-Woo;Jung, Young-Seok;Lee, Jae-Hong
    • Journal of Broadcast Engineering
    • /
    • v.13 no.2
    • /
    • pp.172-178
    • /
    • 2008
  • Orthogonal Frequency Division Multiplexing (OFDM) is one of the most promising technologies for high data rate wireless communications. OFDM has been adopted in wireless standards such as digital audio/video broadcasting. The combination of OFDM and cooperative diversity techniques can provide the diversity gain and/or increased capacity. In this paper, the cooperative coding using cyclic delay diversity (CDD) for multiuser OFDM systems is introduced. To improve the beneficial effects of relays's cooperation, CDD is adopted in cooperative transmission of relays. Simulation results show the bit error rate (BER) for various consideration. The proposed scheme provides improved performance compared to delay.

Simulation of Groundwater Flow and Sensitivity Analysis for a Riverbank Filtration Site in Koryeong, Korea (경북 고령군 강변여과 취수 지역의 지하수 유동 모사 및 민감도 분석)

  • Won, Lee-Jung;Koo, Min-Ho;Kim, Hyoung-Su
    • Journal of Soil and Groundwater Environment
    • /
    • v.11 no.2
    • /
    • pp.45-55
    • /
    • 2006
  • A 2-D unconfined flow model is developed to analyze annual variations of groundwater level and bank filtration rate (BFR) for an experimental riverbank filtration site in Koryeong, Korea. Two types of boundary conditions are examined for the river boundary in the conceptual model: the static head condition that uses the average water level of the river and the dynamic cyclic condition that incorporates annual fluctuation of water level. Simulations show that the estimated BFR ranges $74.3{\sim}87.0%$ annually with the mean of 82.4% for the static head boundary condition and $52.7{\sim}98.1%$ with the mean of 78.5% for the dynamic cyclic condition. The results illustrate that the dynamic cyclic condition should be used for accurate evaluation of BFR. Simulations also show that increase of the distance between the river and the pumping wells slightly decreases BFR up to 4%, and thereby indicate that it is not a critical factor to be accounted for in designing BFR of the bank filtration system. A sensitivity analysis is performed to examine the effects of model parameters such as hydraulic conductivity and specific yield of the aquifer, recharge rate, and pumping rate. The results demonstrate that the average groundwater level and BFR are most sensitive to both the pumping rate and the recharge rate, while the water level of the pumping wells is sensitive to the hydraulic conductivity and the pumping rate.

The Prediction of Fatigue Behavior using Cyclic Creep Concept of R/C Beam Strengthened with Steel Plate and Carbon Fiber Sheet (강판 및 탄소섬유 sheet로 보강된 R/C보의 반복크리프 개념을 적용한 피로거동예측)

  • 심종성;문도영;박경동
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.555-560
    • /
    • 2003
  • Fatigue strength of concrete is ususlly presented by the Wohler Curve. But, new dimension T(time) from the view point of cyclic creep concept should be considerd. This paper presented four variable F-N-T-R relationship, this four variable relationship simultaneously accounts for the time effect and the effect of load rate. And analytical models are presented to predict fatigue strength of R/C beam strengthened with steel plate and carbon fiber sheet. Also, the correlation between the ratio of stress and the fatigue life was investigated.

  • PDF

The Influence of Dynamic Strain Aging on Tensile and LCF Properties of Prior Cold Worked 316L Stainless Steel (냉간가공된 316L 스테인리스 강의 인장 및 저주기 피로 물성치에 미치는 동적변형시효의 영향)

  • Hong, Seong-Gu;Lee, Soon-Bok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.8
    • /
    • pp.1398-1408
    • /
    • 2003
  • Tensile and LCF(low cycle fatigue) tests were carried out in air at wide temperature range 20$^{\circ}C$-750$^{\circ}C$ and strain rates of 1${\times}$10$\^$-4//s-1${\times}$10$\^$-2/ to ascertain the influence of strain rate on tensile and LCF properties of prior cold worked 316L stainless steel, especially focused on the DSA(dynamic strain aging) regime. Dynamic strain aging induced the change of tensile properties such as strength and ductility in the temperature region 250$^{\circ}C$-600$^{\circ}C$ and this temperature region well coincided with the negative strain rate sensitivity regime. Cyclic stress response at all test conditions was characterized by the initial hardening during a few cycles, followed by gradual softening until final failure. Temperature and strain rate dependence on cyclic softening behavior appears to result from the change of the cyclic plastic deformation mechanism and DSA effect. The DSA regimes between tensile and LCF loading conditions in terms of the negative strain rate sensitivity were well consistent with each other. The drastic reduction in fatigue resistance at elevated temperature was observed, and it was attributed to the effects of oxidation, creep and dynamic strain aging or interactions among them. Especially, in the DSA regime, dynamic strain aging accelerated the reduction of fatigue resistance by enhancing crack initiation and propagation.

Influence of loading and unloading of hydraulic support on the caving property of top coal

  • Huayong Lv;Fei Liu;Xu Gao;Tao Zhou;Xiang Yuan
    • Steel and Composite Structures
    • /
    • v.48 no.1
    • /
    • pp.103-111
    • /
    • 2023
  • The caving property of top coal is a key factor to the success of top coal caving mining. The influence law of cyclic loading and unloading of hydraulic support on top coal caving is of great significance to improve the recovery rate of top coal. The similar simulation methods were used to study the dynamic evolution of the top coal cracks under the multi-cycle action of the support, and the parameters of top coal cracks were analyzed quantitatively in this paper. The results show that the top coal cracks can be divided into horizontal cracks and vertical cracks under the cyclic loading and unloading of the support. With the increase of the times of the support cycles loading and unloading, the load on the support decreases, the fractal dimension of the cracks increases, the number and total length of the top coal cracks increases, and the top coal caving is getting better. With the increase of the times of multi-cycle loading and unloading, the fractal dimension, total crack length and crack rate of top coal show a trend of rapid increase first and then increase slowly. Both the total length of the top coal cracks and the crack rate basically show linear growth with the change of the fractal dimension. The top coal caving can be well improved and the coal resource recovery rate increased through the multi-cycle loading and unloading.

Analytical Modeling of Seismic Isolators at Cold Temperature Considering Strain Rate Effects (변형도 속도효과를 고려한 저온에서의 면진장치 해석모델)

  • 김대곤
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.5 no.4
    • /
    • pp.97-105
    • /
    • 2001
  • Rubber bearings may exhibit a significant cold temperature effect and some velocity dependency(strain rate effect). Both of these attributes which affect non-linear behavior must be accounted for when accurately modeling the bearings behavior, therefore, an analytical models is proposed to consider the effects of the cold temperature and strain rate on both rubber and lead. From the results of an experimental investigation where the frozen bearings were tested under lateral cyclic loading with constant axial load, a non-linear system identification with least squares procedure was applied to determine the material properties of rubber and lead. It is demonstrated that the proposed analytical model is able to simulate the reversed cyclic loading behavior of elastometric and lead-rubber bearings.

  • PDF

Quality Increase of Mortar that Uses Cyclic Aggregate and Blast Furnace Slag Due To Changes in Desulfurized Plaster Processing Method (탈황석고의 처리방법 변화에 따른 순환골재와 고로슬래그를 사용한 모르타르의 품질향상)

  • Song, Yuan-Lou;Park, Yong-Jun;Lee, Myung-Ho;Lee, Dong-Yun;Jo, Man-Ki;Han, Min-Cheol
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.11a
    • /
    • pp.57-58
    • /
    • 2015
  • In this research the processing method of Desulfurized Plaster is changed to cyclotomy, 0.3mm sieve analysis and 500℃ heat exposure, and by changing the mix rate of the binding agent to 0~20%, it was applied to mortar that used cyclic aggregate and blast furnace slag for testing. The test results showed that the flow decreased in the order of cyclotomy, high heat exposure, and sieve analysis according to the mix rate of FGD, and while the air volume decreased for cyclotomy, it was shown to have almost no effect on sieve analysis and high heat exposure. The setting time accelerated as the mixing rate of FGD increased, and the compression strength increased as the mixing rate of FGD increased and especially showed a high trend with cyclotomy and sieve analysis.

  • PDF

Effects of Cyclic Loading Rate on response of Reinforced Concrete Structures (철근콘크리트 구조물에 대한 반복하중속도의 영향에 관한 연구)

  • Chung, Lan;Park, Hyun-Soo
    • Computational Structural Engineering
    • /
    • v.2 no.3
    • /
    • pp.77-84
    • /
    • 1989
  • Small-scale models of reinforced concrete beam-column joints and anchorage-bond specimens were subjected to large cyclic displacements at two rates. To assess damage, free vibration tests were conducted. The reliability of the modeling techniques was established by comparison of the results for the slower rate with those obtained from the full-scale tests on prototype. The higher rate of loading caused a greater damage than that at the slower rate. This was evidenced by the measurements of the stiffness obtained from the free-vibration test. The relatively greater extent of damage appears to result from the different bond behavior at different rates of loading.

  • PDF

Synthesis and Biocompatibility of PVA/NaCMC Hydrogels Crosslinked by Cyclic Freezing/thawing and Subsequent Gamma-ray Irradiation

  • Shin, Ji-Yeon;Jeong, Heeseok;Lee, Deuk Yong
    • Journal of Biomedical Engineering Research
    • /
    • v.39 no.4
    • /
    • pp.161-167
    • /
    • 2018
  • Polyvinyl alcohol/sodium carboxymethyl cellulose (PVA/NaCMC) hydrogels were prepared by physical crosslinking (cyclic freezing/thawing) and gamma (${\gamma}$)-ray irradiation to evaluate the effect of NaCMC concentration (2~8 wt%) on the mechanical properties and the biocompatibility of the PVA/NaCMC hydrogels. The swelling rate of PVA/NaCMC hydrogels regardless of irradiation rose with increasing NaCMC content from 2 wt% to 8 wt%, while the gelation rate was the reverse. As the NaCMC content increased from 2 wt% to 6 wt%, the compressive strength of the hydrogels increased dramatically from $8.5{\pm}2.0kPa$ to $52.7{\pm}2.5kPa$ before irradiation and from $13.5{\pm}2.9kPa$ to $65.5{\pm}8.7kPa$ after irradiation. When 8 wt% NaCMC was added afterwards, the compressive strength decreased however. The irradiated PVA/NaCMC hydrogels containing 6 wt% NaCMC exhibited the tailored properties of the swelling rate of $118{\pm}3.7%$, the gelation rate of $71.4{\pm}1.3%$, the strength of $65.5{\pm}8.7kPa$, respectively, and no cytotoxicity was observed.

Electrochemistry Characterization of Metal Using Corrosion Inhibitors Containing Amide Functional Group (아미드 작용기를 가진 부식억제제를 사용한 금속의 전기화학적 특성)

  • Park, Keun-Ho
    • Journal of the Korean Applied Science and Technology
    • /
    • v.28 no.1
    • /
    • pp.48-56
    • /
    • 2011
  • In this study, we investigated the C-V diagrams and metal surface related to the electrochemistry characterization of metal(nickel, SUS-304). We determined electrochemical measurement by using cyclic voltammetry with a three-electrode system. A measuring range was reduced from initial potential to -1350mV, continuously oxidized to 1650 mV and measured to the initial point. The scan rate were 50, 100, 150, 200 and 250 mV/s. As a result, the C-V characterization of metal using N,N-dimethylacetamide and N,N-dimethylformamide inhibitors appeared irreversible process caused by the oxidation current from the cyclic voltammogram. After adding organic corrosion inhibitors, adsorption film constituted, and the passive phenomena happened. According to the results by cyclic voltammetry method, it was revealed that the addition of inhibitors containing amide functional group enhances the corrosion resistance properties.