• 제목/요약/키워드: Cyclic Lateral Loading

검색결과 253건 처리시간 0.027초

Effects of loading history on seismic performance of SRC T-shaped column, Part I: Loading along web

  • Wang, J.;Liu, Z.Q.;Xue, J.Y.;Hu, C.M.
    • Structural Engineering and Mechanics
    • /
    • 제68권2호
    • /
    • pp.193-201
    • /
    • 2018
  • This paper describes an experimental study on the seismic performance of steel reinforced concrete (SRC) T-shaped columns. The lateral loads were applied along the web of the column with different loading histories, such as monotonic loading, mixed loading of variable amplitude cyclic loading and monotonic loading, constant amplitude cyclic loading and variable amplitude cyclic loading. The failure modes, load-displacement curves, characteristic loads and displacements, ductility, strength and stiffness degradations and energy dissipation capacity of the column were analyzed. The effects of loading history on the seismic performance were focused on. The test results show that the specimens behaved differently in the aspects of the failure mode subject to different loading history, although all the failure modes can be summarized as flexural failure. The hysteretic loops of specimens are plump, and minimum values of the failure drift angles and ductility coefficients are 1/24 and 4.64, respectively, which reflect good seismic performance of SRC T-shaped column. With the increasing numbers of loading cycles, the column reveals lower bearing capacity and ductility. The strength and stiffness of the column with variable amplitude cyclic loading degrades more rapidly than that with constant amplitude cyclic loading, and the total cumulative dissipated energy of the former is less.

Seismic analysis of RC tubular columns in air-cooled supporting structure of TPP

  • Wang, Bo;Yang, Ke;Dai, Huijuan;Bai, Guoliang;Qin, Chaogang
    • Earthquakes and Structures
    • /
    • 제18권5호
    • /
    • pp.581-598
    • /
    • 2020
  • This paper aims to investigate the seismic behavior and influence parameters of the large-scaled thin-walled reinforced concrete (RC) tubular columns in air-cooled supporting structures of thermal power plants (TPPs). Cyclic loading tests and finite element analysis were performed on 1/8-scaled specimens considering the influence of wall diameter ratio, axial compression ratio, longitudinal reinforcement ratio, stirrup reinforcement ratio and adding steel diagonal braces (SDBs). The research results showed that the cracks mainly occurred on the lower half part of RC tubular columns during the cyclic loading test; the specimen with the minimum wall diameter ratio presented the earlier cracking and had the most cracks; the failure mode of RC tubular columns was large bias compression failure; increasing the axial compression ratio could increase the lateral bearing capacity and energy dissipation capacity, but also weaken the ductility and aggravate the lateral stiffness deterioration; increasing the longitudinal reinforcement ratio could efficiently enhance the seismic behavior; increasing the stirrup reinforcement ratio was favorable to the ductility; RC tubular columns with SDBs had a much higher bearing capacity and lateral stiffness than those without SDBs, and with the decrease of the angle between columns and SDBs, both bearing capacity and lateral stiffness increased significantly.

Quasi-static cyclic displacement pattern for seismic evaluation of reinforced concrete columns

  • Yuksel, E.;Surmeli, M.
    • Structural Engineering and Mechanics
    • /
    • 제37권3호
    • /
    • pp.267-283
    • /
    • 2011
  • Although earthquakes generate random cyclic lateral loading on structures, a quasi-static cyclic loading pattern with gradually increasing amplitude has been commonly used in the laboratory tests because of its relatively low cost and simplicity compared with pseudo-dynamic and shake table tests. The number, amplitudes and sequence of cycles must be chosen appropriately as important parameters of a quasi-static cyclic loading pattern in order to account for cumulative damage matter. This paper aims to reach a new cyclic displacement pattern to be used in quasi-static tests of well-confined, flexure-dominated reinforced concrete (RC) columns. The main parameters of the study are sectional dimensions, percentage of longitudinal reinforcement, axial force intensity and earthquake types, namely, far-fault and near-fault.

Behavior of tunnel form buildings under quasi-static cyclic lateral loading

  • Yuksel, S. Bahadir;Kalkan, Erol
    • Structural Engineering and Mechanics
    • /
    • 제27권1호
    • /
    • pp.99-115
    • /
    • 2007
  • In this paper, experimental investigations on the inelastic seismic behavior of tunnel form buildings (i.e., box-type or panel systems) are presented. Two four-story scaled building specimens were tested under quasi-static cyclic lateral loading in longitudinal and transverse directions. The experimental results and supplemental finite element simulations collectively indicate that lightly reinforced structural walls of tunnel form buildings may exhibit brittle flexural failure under seismic action. The global tension/compression couple triggers this failure mechanism by creating pure axial tension in outermost shear-walls. This type of failure takes place due to rupturing of longitudinal reinforcement without crushing of concrete, therefore is of particular interest in emphasizing the mode of failure that is not routinely considered during seismic design of shear-wall dominant structural systems.

Experimentally evaluating the seismic retrofitting of square engineered cementitious composite columns using CFRP

  • Akhtari, Alireza;Mortezaei, Alireza;Hemmati, Ali
    • Structural Engineering and Mechanics
    • /
    • 제78권5호
    • /
    • pp.545-556
    • /
    • 2021
  • The present experimental study evaluated the seismic performance of six engineered cementitious composite (ECC) columns strengthened with carbon fiber reinforced polymer (CFRP) laminates under cyclic lateral loading. The ECC columns damaged and crushed in the first stage of cyclic tests were repaired using the ECC with a certain polyvinyl alcohol (PVA) fiber and strengthened with flexural and sheer CFRP laminates and then re-assessed under the cyclic loading. The effects of some variables were examined on lateral displacement, energy absorption and dissipation, failure modes, crack patterns, load bearing capacity and plasticity, and the obtained results were compared with those of the first stage of cyclic tests. The results showed that retrofitting the ECC columns can improve their performance, plasticity and load-bearing threshold, delayed the concrete failure, changed the failure modes and increased the energy absorbed by the strengthened columns element by over 50%.

모래지반에서 반복수평하중을 받는 항타 말뚝의 수평거동 (Lateral Behavior of Driven Piles Subjected to Cyclic Lateral Loads in Sand)

  • 백규호
    • 한국지반공학회논문집
    • /
    • 제26권12호
    • /
    • pp.41-50
    • /
    • 2010
  • 반복수평하중을 받는 말뚝의 거동은 정적하중을 받는 경우와 다르며, 지반 및 하중특성에 영향을 받는다. 본 연구에서는 모래지반에서 반복하중특성이 말뚝의 수평거동에 미치는 영향을 조사하기 위하여 가압토조를 이용한 모형말뚝 재하시험을 수행하였다. 실험결과에 따르면 반복수평하중을 받는 말뚝의 극한수평지지력은 하중의 반복재하횟수가 많아질수록 선형적으로 감소하였고 수평하중의 크기가 커질수록 조금씩 증가하였다. 그리고 수평하중의 반복재하횟수가 증가할수록 극한상태에서 말뚝에 발생하는 최대 휨모멘트는 감소했으나 그 발생위치는 말뚝 근입길이의 0.36배 되는 곳으로 일정하였다. 반면 반복수평하중의 크기가 증가하면 극한상태에서 말뚝의 최대 휨모멘트와 그 발생위치가 조금씩 증가하였으며, 반복수평하중은 정적하중에 비해 말뚝의 극한수평지지력과 극한상태에서 말뚝의 최대 휨모멘트를 감소시키는 것으로 나타났다. 또한 모형실험결과에 근거해서 조밀한 모래지반에서 반복수평하중을 받는 말뚝의 극한수평지지력을 산정할 수 있는 지지력산정식을 제안하였으며, 제안식으로부터 얻은 계산치를 실험치와 비교한 결과 제안식은 모형실험의 결과를 잘 반영하는 것으로 나타났다.

Modelling of recycled aggregate concrete-filled steel tube (RACFST) beam-columns subjected to cyclic loading

  • Yang, You-Fu
    • Steel and Composite Structures
    • /
    • 제18권1호
    • /
    • pp.213-233
    • /
    • 2015
  • A nonlinear finite element analysis (FEA) model is presented for simulating the behaviour of recycled aggregate concrete-filled steel tube (RACFST) beam-columns subjected to constant axial compressive load and cyclically increasing flexural loading. The FEA model was developed based on ABAQUS software package and a displacement-based approach was used. The proposed engineering stress versus engineering strain relationship of core concrete with the effect of recycled coarse aggregate (RCA) replacement ratio was adopted in the FEA model. The predicted results of the FEA model were compared with the experimental results of several RACFST as well as the corresponding concrete-filled steel tube (CFST) beam-columns under cyclic loading reported in the literature. The comparison results indicated that the proposed FEA model was capable of predicting the load versus deformation relationship, lateral bearing capacity and failure pattern of RACFST beam-columns with an acceptable accuracy. A parametric study was further carried out to investigate the effect of typical parameters on the mechanism of RACFST beam-columns subjected to cyclic loading.

이방향 하중을 받는 모서리 보-기둥 접합부의 내진성능 평가 (Testing of RC Corner Beam-column Joints under Bidirectional Loading)

  • 한상환;장용석;이창석
    • 한국지진공학회논문집
    • /
    • 제24권4호
    • /
    • pp.189-196
    • /
    • 2020
  • In this study, two full-scale gravity load-designed reinforced concrete corner beam-column joints were tested by being subjected to uniand bi-directional cyclic lateral loading. The test variable was loading type: uni- or bi-directional loading. To investigate the effect of the loading type on the cyclic behavior of joint specimens, damage progression, force-deformation relation, contribution of joint deformation to total drift, joint stress-strain response, and cumulative energy dissipation were investigated. The test data suggest that bidirectional loading can amplify damage accumulation in the joint region.

반복수평하중을 받는 철근콘크리트 기둥의 비탄성 거동에 관한 실험적 연구 (An Experimental Study on the Inelastic Behavior of the Reinforced Concrete Column Subject to Cyclic Lateral Loads)

  • 정세환;정하선;김상식
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1991년도 가을 학술발표회 논문집
    • /
    • pp.45-50
    • /
    • 1991
  • This research has been carried out experimently to verify the structural efficiency of the reinforced concrete columns subjected to cyclic lateral loadings in the inelastic range. Sixteen specimens have been used in the tests, the factors such as reinforcing bars, shear-span ratio, axial load level and loading history being taken differently. The load-carrying capacities and the stiffness degradation in the inelastic range by cycle lateral load application have been counted by observing the load-deformation relationship, the crack initiation and propagation and the energy dissipation phenomena.

  • PDF

Complete collapse test of reinforced concrete columns

  • Abdullah, Abdullah;Takiguchi, Katsuki
    • Structural Engineering and Mechanics
    • /
    • 제12권2호
    • /
    • pp.157-168
    • /
    • 2001
  • In this paper, experimental investigation into the behavior of reinforced concrete (RC) columns tested under large lateral displacement with four different types of loading arrangements is presented. Each loading arrangement has a different system for controlling the consistency of the loading condition. One of the loading arrangements used three units of link mechanism to control the parallelism of the top and bottom stub of column during testing, and the remaining employed eight hydraulic jacks for the same purpose. The loading systems condition used in this investigation were similar to the actual case in a moment-resisting frame where the tested column was displaced in a double curvature. Ten model column specimens, divided into four series were prepared. Two columns were tested monotonically until collapse, and unless failure took place at an earlier stage of loading, the remaining eight columns were tested under cyclic loading. Test results indicated that the proposed system to keep the top and bottom stubs parallel during testing performed well.