• Title/Summary/Keyword: Cyclic AMP

Search Result 314, Processing Time 0.037 seconds

Mutant cAMP Receptor Protein Binds to DNA without DNA Bending (DNA 벤딩(휨) 없이 돌연변이 cAMP 수용체 단백질의 결합)

  • Gang, Jong-Back
    • Journal of Life Science
    • /
    • v.16 no.7 s.80
    • /
    • pp.1225-1228
    • /
    • 2006
  • Cyclic AMP receptor protein (CRP) complexed with cAMP binds to DNA and induces sharp DNA bending around ${\sim}90$ degree. Previous publication (5), however, reported that mutant CRP:cGMP complex showed high migration rate relative to mutant CRP:cAMP complex on native polyacrylamide gel. To confirm DNA structural change in the presence of CRP and cyclic nucleotide, molar cyclization factor $(j_M)$ [13] was measured with 6 constructed DNA fragments. Nonlinear regression analysis of $j_M$ data indicated that mutant CRP did not induce DNA bending in the presence of cGMP but bent DNA in the presence of cAMP without any helical twist change in DNA.

Cyclic AMP Receptor Protein Adopts the Highly Stable Conformation at Millimolar cAMP Concentration (높은 cAMP 농도에서 cAMP 수용성 단백질의 열 안정화)

  • Kang, Jong-Baek;Choi, Young
    • Journal of Life Science
    • /
    • v.13 no.5
    • /
    • pp.751-755
    • /
    • 2003
  • Cyclic AMP receptor proteins(CRP) activate many genes in Escherichia coli by binding of cAMP with not fully known mechanism. CRP existed as apo-CRP in the absence of cAMP, $CRP;(cAMP)_2$$_2$ at low(micromolar) cAMP concentration, or $CRP;(cAMP)_4$ at high(millimolar) concentration of cAMP. This study is designed to measure the thermal stability of S83G CRP, which substituted glycine for serine at amino acid 83 position, with CD spectrapolarimeter at 222nm by the constant elevation of temperature from $20^{\circ]C\; to\; 90^{\circ}C\; at\; 1^{\circ}C/min$. The non-linear regression analysis showed that melting temperatures were 68.4, 72.0, and $82.3^{\circ}C$ for no cAMP, 0.1mM cAMP, and 5mM cAMP, respectively. Result showed the strong thermal stability of CRP by binding of additional cAMP molecules to region between the hinge region and helix-turn-helix(HTH) motif at 5mM cAMP concentration.

Inhibition of $Na^+,\;K^+$$-ATPase, cyclicAMP Phonsphodiesterase and Platelet Activation by Secondary Metabolites from Marine Organisms (혈소판 및 $Na^+,\;K^+$$-ATPase, cyclicAMP 포스포디에스테라제에 대한 해양천연물질의 작용)

  • Park, Young-Hyun;Chang, Sung-Keun;Kim, In-Kyu;Seo, Young-Wan;Shin, Jong-Heon
    • YAKHAK HOEJI
    • /
    • v.41 no.3
    • /
    • pp.345-351
    • /
    • 1997
  • The purpose of this investigation was to determine the inhibition of $Na^+,\;K^+$-ATPase, cyclicAMP phophodiesterase and platelet activation by secondary metabolites isolated from mar ine organisms. The secondary metabolites were isolated and identified as six diterpenoids(1 : astrogorgin, 2 : ophirin, 3 : calicophirin B, 4, 5 and 6 : cladiellin) from the dichloromethane extract of Muricellajsp., four ceramides(1,2,3, and 4) from Acabaria undulata and three antharaquinones(1,2 : crysophanol, and 3 : physcion) from Urechis unicintus. The results demonstrated that diterpenoids(2,3, and 4) showed the inhibition of cyclicAMP phosphodiesterase, and ceramides(1,3, and 4) showed the inhibition of cyclicAMP phosphodiesterase and thrombin(0.1 units/ml)-induced aggregation of washed rabbit platelet, and anthrapuinones((1,2, and 3) showed the inhibition of $Na^+,\;K^+$-ATPase. Among the anthraquionones, 1,2-dimethoxy-3-methyl-8-hydroxy-anthraquinone(1) showed the inhibition of collagen(1.0 ${\mu}g$/ml)-induced aggregation in a concenration-dependent manner with IC50 value of 42.8 ${\mu}g$M.

  • PDF

Studies on the mechanism of cytotoxicities of polyacetylenes against L1210 cell

  • Kim, Young-Sook;Jim, Seung-Ha;Kim, Shin-Il;Hahn, Dug-Ryong
    • Archives of Pharmacal Research
    • /
    • v.12 no.3
    • /
    • pp.207-213
    • /
    • 1989
  • This study was performed to investigate the mechanism of in vitro cytotosic actions of polyacetylenes which are panaxydol, panaxynol and panaxytriol isolated from Panax ginseng C. A. Meyer. DNA synthesis of L1210 cells was significantly inhibited with dose dependent pattern when L1210 cells were treated for 1 hour with over 5 .mu.g/ml of polyacetylenes. Panaxydol which had the most potent cytotoxicity among three polyacetylenes showed also the strongest inhibitory effect on DNA synthesis. Intracellular cyclic AMP levels of L1210 cells treated with 2.5 $\mu$g/ml of panaxydol or panaxytriol were significantly elevated on the incubation duration. The elevation of cyclic AMP levels by panaxytriol was higher than that by panaxydol, but no significant increase in cyclic AMP by panaxynol was observed. All three polyacetylenes had no effect on glycolysis of L1210 cells. Electron microscopic observations revealed that polyacetylenes caused damage to plasma membranes of L1210 cells in proportion to their cytotoxicities at each $ED_{50}$ value (panaxydol > panaxynol> panaxytriol). These results suggest that cytotoxicities of polyacetylenes against L1210 cells might be mediated by elevated cyclic AMP level, even though the relationship among their cytotoxicities, inhibitory effect on DNA synthesis and ability to elevation of cyclic AMP level are not fully agreed, and might be also related to membrane damage.

  • PDF

Effects of Protein Kinase Inhibitors on Melanin Production in B16 Melanoma Cells Stimulated via Cyclic AMP-dependent Pathway (B16 Melanoma 세포에서 Protein Kinase 억제제들이 Cyclic AMP 경로를 통한 멜라닌 생성에 미치는 영향)

  • 차상복;조남영;윤미연;임혜원;김경원;박영미;이지윤;이진희;김창종
    • YAKHAK HOEJI
    • /
    • v.47 no.1
    • /
    • pp.31-36
    • /
    • 2003
  • To investigate the effect of protein kinase on melanin production via cAMP-dependent pathway, we measured the melanin amount and tyrosinase activity in B16 melanoma cells stimulated by alpha-melanocyte stimulating hormone (MSH), forskolin and 8-Br-cAMP. MSH, forskolin and 8-Br-cAMP significantly increased both melanin production and tyrosinase activity in B16 cells. Melanin production and tyrosinase activity by MSH are significantly inhibited by cyclic AMP-dependent protein kinase inhibitor (KT5720) and protein kinase C down-regulation treated with PMA. Bisindolmaleimide (1$\mu$M), protein kinase C inhibitor, significantly inhibited melanin production and tyrosinase activity stimulated by MSH, forskolin and 8-Br-cAMP with the following order of potency: MSH>forskolin>8-Br-cAMP. Tyrosine kinase inhibitor, genistein and DHC, significantly inhibited both, but the inhibitory effect was more potent in 8-Br-cAMP-stimulated B16 cells than MSH-stimulated cells. NFkB inhibitor (parthenolide) significantly inhibited melanin production and tyrosinase activity. Neither melanin production nor tyrosinase activity induced by MSH, forskolin and 8-Br-cAMP were affected by KN-62 (calmodulin-dependent protein kinase II inhibitor), PD098059 (mitogen-activated protein kinase inhibitor, MAPKK) and worthmannin (phosphatidylinositol 3-kinase inhibitor). These results suggest that both protein kinase C and tyrosine kinase are involved in melanin production by cyclic AMP-dependent pathway and NFkB pathway may play an important role in cyclic AMP-dependent melanin production in B16 melanoma cells.

3',5'-Cyclic Adenosine Monophosphate (cAMP) as a Signal and a Regulatory Compound in Bacterial Cells (원핵세포에서 신호물질 및 조절인자로서의 3',5'-Cyclic Adenosine Monophosphate의 역할)

  • Chun, Se-Jin;Seok, Young-Jae;Lee, Kyu-Ho
    • Microbiology and Biotechnology Letters
    • /
    • v.34 no.4
    • /
    • pp.289-298
    • /
    • 2006
  • 3',5'-cyclic adenosine monophosphate (cAMP) is an important molecule, which mediates diverse cellular processes. For example, it is involved in regulation of sugar uptake/catabolism, DNA replication, cell division, and motility in various acterial species. In addition, cAMP is one of the critical regulators for syntheses of virulence factors in many pathogenic bacteria. It is believed that cAMP acts as a signal for environmental changes as well as a regulatory factor for gene expressions. Therefore, intracellular concentration of cAMP is finely modulated by according to its rates of synthesis (by adenylate cyclase), excretion, and degradation (by cAMP phosphodiesterase). In the present review, we discuss the bacterial physiological characteristics governed by CAMP and the molecular mechanisms for gene regulation by cAMP. Furthermore, the effect of cAMP on phosphotransferase system is addressed.

Effect of Cyclic AMP on the Two Promoters of Escherichia coli Thioredoxin Gene

  • Sa, Jae-Hoon;Fuchs, James A.;Lim, Chang-Jin
    • BMB Reports
    • /
    • v.30 no.5
    • /
    • pp.320-325
    • /
    • 1997
  • Thioredoxin is a multi-functional protein which is ubiquitous in microorganisms, animals and plants. Previously, expression of the E. coli thioredoxin gene was found to be negatively regulated by cAMP. In the present study, the effect of cAMP on two separate promoters of the E. coli thioredoxin gene was investigated. Cyclic AMP had a repressible effect on P1 and P1P2 promoter activity of the constructs. This effect was also observed in the cya strain. The P2 promoter construct gave very high -galactosidase activity, and its expression was not affected by exogenous cAMP. It was assumed that a cis-acting negative element, probably the cAMP-CRP binding site, might have been deleted in the P1 promoter construct. Repression of the thioredoxin gene expression by cAMP appeared to be independent of ppGpp.

  • PDF

Studies on the Mechanical Activities of Rabbit Myometrium V. Effects of Acetylcholine, Oxytocin and Prostagla, din F2α on Cyclic Nucleotide Levels of Rabbit Whole Uterus (가토 척출 자궁근의 운동성에 관한 연구 V. Acetylcholine, PGF2α 및 Oxytocin의 자궁 수축기전에 관한 연구)

  • Lee, Chang-Eop;Kwun, Jong-Kuk;Lee, Joong-Sup;Yang, Il-Suk;Lee, Mun-Han
    • Korean Journal of Veterinary Research
    • /
    • v.22 no.1
    • /
    • pp.1-8
    • /
    • 1982
  • The effect of acetylcholine, oxytocin and prostaglandin $F_{2{\alpha}}$ ($PGF_{2{\alpha}}$) on cyclic nucleotide levels in estrogen-primed rabbit whole uterus were studied in the presence and absence of 1-methyl-3-isobutyl xanthine (MIX), a phosphodiestrase inhibitor, and indomethacin, a prostagandin inhibitor. In the absence of MIX, acetylcholine increased guanosine 3', 5'-cyclic monophosphate (cGMP), but had no effect on adenosine 3', 5'-cyclic monophosphate (cAMP) levels. In contrast, oxytocin had no influence on cGMP, but decreased cAMP levels. $PGF_{2{\alpha}}$ increased cGMP and decreased cAMP levels. MIX increased both cAMP and cGMP levels. Oxytocin and $PGF_{2{\alpha}}$ further increased cGMP levels, indicating activation of guanylate cyclase activity. The ratio of cAMP/cGMP was decreased by uterine stinulants both in presence and absence of MIX. Indomethacin elevated cAMP and cGMP revels. The effects of uterine stimulants in the presence of indomethacin on cyclic nucleotide levels were varied from tissue to tisse. In general, oxytocin decreased cGMP and $PGF_{2{\alpha}}$ increased cAMP/cGMP levels, but the effects were statisically nonsignicficant. The cAMP/cGMP ratio was increased by uterine stimulant in the presence of indomethacin. In conclusion, uterine stimulants eased cAMP/cGMP ratio which indicates that the uterine stimulants have opposing effects on adenylate cyclase and guanylate cyclase activities. The endometrium plays a role in the regulation of cyclic nucleotide levels and uterine contraction by means of PG synthesis. Indomethacin has an unknown activities besides both of PG synthetase and phosphodiesterase inhibitions.

  • PDF

Forskolin-Induced Potentiation of Catecholamine Secretion Evoked By Ach, DMPP, McN-A-343 and Excess $K^+$ From the Rat Adrenal Gland (Forskolin의 흰쥐적출관류부신으로 부터 Ach, Excess $K^+$, DMPP, McN-A-343에 의한 Catecholamine 분비효과의 증강작용)

  • Lim, Dong-Yoon;Kim, Won-Shik;Choi, Cheol-Hee
    • The Korean Journal of Pharmacology
    • /
    • v.27 no.2
    • /
    • pp.167-181
    • /
    • 1991
  • The present study was an attempt to investigate the effect of forskolin on secretion of catecholamines (CA) evoked by Ach, excess $K^+$, DMPP, McN-A-343 and caffeine from the isolated perfused rat adrenal glands and to elucidate its mechanism of action. The perfusion with forskolin (1.0 uM) for 1 min into the adrenal vein enhanced markedly the secreation of CA evoked by Ach (50 ug), excess $K^+$ (56 mM) DMPP (100 uM) and by caffeine (0.3 mM) but did not that by McN-A-343. Forskolin alone did not potentiate the CA secretion. Moreover, forskolin augmented the CA release evoked by the above same stimulation even in the absence of extracellular calcium. The 1 min perfusion of 300 uM-dibutyryl cyclic AMP (DBcAMP), which is known to increase cyclic AMP levels, led to enhancement of Ca secretion evoked by Ach, excess $K^+$ and DMPP but did not that by McN-A-343 and caffeine. DBcAMP by itself also did not augment the CA secretion. In the calcium-free medium DBcAMP significantly enhanced the CA secretion by the same stimulation, except for the case of McN-A-343. These experimental results suggest that forskolin activates adenylate cyclase, resulting the elevation of cyclic AMP which may potentiate cholinergic nicotinic receptor-mediated and also depolarization-dependent CA secretion and that it may alter the intracellular calcium homeostasis in the rat adrenal glands.

  • PDF

Mechanisms for the Initiation of Sperm Motility (정자운동 개시 기구)

  • Kho Kang Hee;Kang Kyoung Ho;Chang Young Jin
    • Development and Reproduction
    • /
    • v.7 no.2
    • /
    • pp.81-88
    • /
    • 2003
  • Initiation and activation of sperm motility are prerequisite processes for the contact and fusion of male and female gametes at fertilization. The phenomena are under the regulation of CAMP and $Ca^{2+}$ in vertebrates and invertebrates. Mammalian sperm requires $Ca^{2+}$and cyclic AMP for the activation of sperm motility. Cell signaling for the initiation and activation of sperm motility has been well studied in the ascidians, Ciona intestinalis and C. savignyi and salmonid fishes. In Ciona, whose cell signaling for activation of sperm motility has been established, the sperm-activating and -attracting factor released from unfertilized egg requires extracellular $Ca^{2+}$ for activating sperm motility and eliciting chemotactic behavior of the activated sperm toward the egg. On the other hand, the cyclic AMP-dependent phosphorylation of protein is essential for the initiation of sperm motility in salmonid fishes. A decrease in the environmental Ti concentration surrounding the spawned sperm causes a li efflux and $Ca^{2+}$ influx through the specific $K^{+}$ channel and dihydropyridine-sensitive L-/T- type $Ca^{2+}$ channel, respectively, thereby leading to the membrane hyperpolarization and $Ca^{2+}$ influx. The membrane hyperpolarization synthesizes cyclic AMP, which triggers the luther Process of cell signaling, i.e., cyclic AMP-dependent protein phosphorylation, to initiate sperm motility in salmond fishes.almond fishes.

  • PDF