• 제목/요약/키워드: Cycle-dependent crack growth

검색결과 8건 처리시간 0.024초

SUS304강의 사이클의존형에서 시간의존형균열성장으로의 천이에 관한 연구 (A Study on Transition From Cycle-dependent to Time-dependent Crack Growth in SUS304 Stainless Steel)

  • 주원식;조석수
    • Journal of Welding and Joining
    • /
    • 제14권1호
    • /
    • pp.38-46
    • /
    • 1996
  • High temperature low cycle fatigue crack growth behavior is investigated over a range of two temperatures and various frequencies in SUS 304 stainless steel. It is found that low frequency and temperature can enhance time-dependent crack growth. With high temperature, low frequency and long crack length, ${\Delta}J_c/{\Delta}J_ f$, the ratio of creep J integral range to fatigue J integral range is increased and time-dependent crack growth is accelerated. Interaction between ${\Delta}J_f$ and ${\Delta}J_c$ is occured at high frequency and low temparature and ${\Delta}J_c$, creep J integral range is fracture mechanical parameter on transition from cycle-dependent to time dependent crack growth in creep temperature region.

  • PDF

SUS 304 강의 크리프 온도역에 있어서 피로균열성장거동에 관한 연구 (A Study on Fatigue Crack Growth Behavior at a Creep Temperature Region in SUS 304 Stainless Steel)

  • 주원식;오세욱;조석수
    • 대한기계학회논문집
    • /
    • 제18권3호
    • /
    • pp.548-554
    • /
    • 1994
  • The high temperature fatigue crack growth behavior of SUS 304 stainless steel at $550^{\circ}C$ and $650^{\circ}C$ was investigated under various kinds of stress ratio and frequency in sinusoidal waveform on the basis of the non-linear fracture mechanics. The result arranging crack growth rate by modified J-integral J' showed influence of stress ratio and frequency. All the data obtained under the test at $550^{\circ}C$ were plotted within data band of da/dN-${\triangle}J_f$ relationship for cycle-dependent crack growth. On the basis of static creep and cycle-dependent data band; both time- and cycle-dependent crack growth behavior was observed under loading conditions at $650^{\circ}C$, but cycle-dependent crack growth behavior predominantly appeared and time-dependent crack growth behaviour was little observed under loading conditions at $550^{\circ}C$. Fractographic examinations for fracture surface indicated that the fracture mode was generally transgranular. The stripes were found on fracture surface and each stripe was accompanied by a crack tip blunting and an abrupt increase in the load-point displacement. The $J'_{an}$ had a validity in case of $650^{\circ}C, but scarcely had it in case of $550^{\circ}C$.

크리이프-피로 상호작용하의 균열성장속도 예측에 관한 연구 (A Study on Prediction of Crack growth Rate Under Creep-Fatigue Interaction)

  • 주원식;조석수
    • 한국해양공학회지
    • /
    • 제9권2호
    • /
    • pp.98-111
    • /
    • 1995
  • High temperature low cycle fatigue shows that cycle-dependent crack growth owing to cyclic plastic deformation occurred simultaneosly with time-dependent crack growth owing to intergranular deformation. Consequently, to estimate crack growth rate uniquely, many to investigators have proposed various kinds of parameters and theories but these could not produce satisfactory results. Therefore the goal of this study is focused on prediction of crack growth rate using predominant damage rule, linear cumulative damage rule and transitional parameter ${\Delta}J_c/{\Delta}J_f$. On the basis of these sinusoidal loading waveform at 600$^{\circ}C$ and 700$^{\circ}C$.

  • PDF

SUS 304鋼 의 크리이프 溫度領域 에 관한 時間依存型 및 사이클依存型 疲勞크랙 傳播 의 遷移 (Transition from Cycle-Dependent to Time-Dependent Fatigue Crack Propagation at Creep Temperature of SUS 304 Steel)

  • 유헌일;주원식
    • 대한기계학회논문집
    • /
    • 제9권5호
    • /
    • pp.539-547
    • /
    • 1985
  • 본 논문에서는 이상과 같은 연구현상을 배경으로 응력비 R.geq.0인 사인응력파 에서도 사이클의존형 크랙전파가 공존하는가, 공존한다면 그 전이를 결정짓는 조건을 구하기 위해, 대표적인 고온용 재료인 SUS 304강을 이용하여 온도 650.deg. C, 대기중에서 반복속도 .nu., 응력비 R, 응력레벨 .sigma.$_{maxo}$등의 실험조건을 바꾸어 고온저사이클 피로실험을 하였다. 또 이 현상의 기초과정을 이해하는데 도움을 주기 위하여 파면 관찰을 행하였다.

6061알루미늄의 피로 균열 성장과 관통에 따른 탄성파의 응력비 영향 (Influence of Stress Ratio of Elastic Waves Generated by Fatigue Crack Growth and Penetration in 6061 Aluminum Plates)

  • 안석환;김진욱;남기우
    • 대한기계학회논문집A
    • /
    • 제29권6호
    • /
    • pp.822-827
    • /
    • 2005
  • The characteristics of elastic waves emanating from crack initiation and propagation in 6061 aluminum alloy subjected to fatigue loading with different stress ratio was investigated. The objective of this study is to determine the properties of the signals generated from each stage of fatigue crack growth. AS a crack propagates, substantial elastic wave occurred just prior to penetration. Then it decreased and the crack penetrated. The waveforms and their power spectra were found to be dependent on the different stress ratio associated with the signals. It is determined that high-frequency signal $0.5{\sim}0.75$ MHz is most likely emitted during crack propagation at peak load of fatigue cycle which release the highest energy. It is determined that 0.3 MHz is closely related to crack closure effect. The frequency peaks below 0.25 MHz may be attributed to fretting or hydraulic noise.

A Numerical Model for the Freeze-Thaw Damages in Concrete Structures

  • Cho Tae-Jun
    • 콘크리트학회논문집
    • /
    • 제17권5호
    • /
    • pp.857-868
    • /
    • 2005
  • This paper deals with the accumulated damage in concrete structures due to the cyclic freeze-thaw as an environmental load. The cyclic ice body nucleation and growth processes in porous systems are affected by the thermo-physical and mass transport properties, and gradients of temperature and chemical potentials. Furthermore, the diffusivity of deicing chemicals shows significantly higher value under cyclic freeze-thaw conditions. Consequently, the disintegration of concrete structures is aggravated at marine environments, higher altitudes, and northern areas. However, the properties of cyclic freeze-thaw with crack growth and diffusion of chloride ion effects are hard to be identified in tests, and there has been no analytic model for the combined degradations. The main objective is to determine the driving force and evaluate the reduced strength and stiffness by freeze-thaw. For the development of computational model of those coupled deterioration, micro-pore structure characterization, pore pressure based on the thermodynamic equilibrium, time and temperature dependent super-cooling with or without deicing salts, nonlinear-fracture constitutive relation for the evaluation of internal damage, and the effect of entrained air pores (EA) has been modeled numerically. As a result, the amount of ice volume with temperature dependent surface tensions, freezing pressure and resulting deformations, and cycle and temperature dependent pore volume has been calculated and compared with available test results. The developed computational program can be combined with DuCOM, which can calculate the early aged strength, heat of hydration, micro-pore volume, shrinkage, transportation of free water in concrete. Therefore, the developed model can be applied to evaluate those various practical degradation cases as well.

18Ni 마르에이징강의 피로특성 및 유한요소해석 (Fatigue Characteristics and FEM Analysis of $18\%$Ni(200) Maraging Steel)

  • 최병기;장경천
    • 한국공작기계학회논문집
    • /
    • 제14권2호
    • /
    • pp.75-82
    • /
    • 2005
  • Recently the needs of high reliable substances of high strength and high ductility are gradually increased with the development of aerospace industry. The characteristics of maraging steel has high ductililty, formability, corrosion resistant and high temperature strength and is easy to fabricate, weld and treat with heat, and maintain an invariable size even after heat treatment. e steels are furnished in the solution annealed condition and they achieve full properties through martensitic precipitation aging a relatively simple, low temperature heat treatment. As is true of the heat treating procedures, aging is a time/temperature dependent reaction. Therefore, the objective of this stud)'was consideration of fatigue characteristics according as Nb(niobium) content and time/temperature of heat treatment change. Also the stress analysis, fatigue lift, and stress intensity factor were compared with experiment results and FEA(finite element analysis) result. The maximum ftresses of)( Y, and Z axis direction showed about $2.12\times$10$^{2}$MPa, $4.40\times$10$^{2}$MPa and $1.32\times$10$^{2}$MPa respectively. The fatigue lives showed about $7\%$ lower FEA result than experiment result showing almost invariable error every analyzed cycle. Stress intensity factor of the FEA result was lower about $3.5~ 10\%$ than that of the experiment result showing that the longer fatigue crack ten添 the hi인or error. It considered that the cause for the difference was the modeled crack tip having always the same shape and condition regardless of the crack growth.

역사이클하중이 원자력 배관재료의 파괴저항곡선에 미치는 영향 (Effect of Reverse Cyclic Loading on the Fracture Resistance Curve of Nuclear Piping Material)

  • 원종일;석창성
    • 대한기계학회논문집A
    • /
    • 제23권7호
    • /
    • pp.1112-1119
    • /
    • 1999
  • Fracture resistance(J-R) curves, which are used for the elastic-plastic fracture mechanics analyses, are known to be dependent on the cyclic loading history. The objective of this paper is to study the effect of reverse cyclic loading on J-R curves in CT specimens. The effect of two parameters was observed on the J-R curves during the reverse cyclic loading. One was the minimum-to-maximum load ratio(R) and the other was the incremental plastic displacement(${\delta}_{cycle}/{\delta}_i$), which is related to the amount of crack growth that occurs in a cycle. Fracture resistance test on CT specimens with varying load ratio and incremental plastic displacement were performed. For the SA 516 Gr. 70 steel, the results showed that the J-R curves were decreased with decreasing the load ratio and the incremental plastic displacement. When the load ratio was set to -1, the results of the J-R curves and the $J_i$ value were about $40{\sim}50$ percent of those for the monotonic loading condition. Also on condition that the incremental plastic displacement reached 1/40, the J-R curves and the $J_i$ value were about $50{\sim}60$ percent of those for the incremental plastic displacement of 1/10.