• Title/Summary/Keyword: Cycle wheelchair

Search Result 12, Processing Time 0.032 seconds

Electromyographic features of upper body during wheelchair cycle ramps ascent for disabled with spinal cord injury (휠체어 사이클 경사로 주행 시 척수손상 장애인의 상체 근전도 특성 분석)

  • Kim, S.B.;Ko, C.Y.;Kang, S.J.;Choi, H.J.;Rue, J.C.;Mun, M.S.
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.7 no.1
    • /
    • pp.13-19
    • /
    • 2013
  • The aim of this study was to investigate difference of the muscle activation patterns of the upper body during wheelchair cycle ramps ascent of different slopes for disabled with spinal cord injury. Three subjects who is disabled with spinal cord injury participated in this study. Surface electromyography (EMG) data (reaction time [RT], onset-offset time, and peak value of muscle activation) were collected biceps, triceps, upper trapezius, anterior deltoid, latissimus dorsi, and upper rectus abdominal muscles during wheelchair cycle ramps ascent ($0^{\circ}$, $3^{\circ}$, and $6^{\circ}$). For latissimus dorsi muscle, RT and peak value of muscle activation was were increased and offset time was delayed as the slope increased (p < 0.05). These results indicate that wheelchair cycle ramps ascent might cause excessive overuse of latissimus dorsi muscle.

  • PDF

Design of BLDC Motor Controller for Electric Power Wheelchair

  • Chu, Jun-Uk;Moon, In-Hyuk;Choi, Gi-Won;Ryu, Jei-Cheong;Mun, Mu-Seong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1509-1512
    • /
    • 2003
  • The electric power wheelchair needs to control motor torque and speed for responding to variable actions given by handling a joystick. In this paper a DSP-based BLDC motor controller using a single dc-link current sensor is presented for electric power wheelchair. It is composed by a DSP processor and three-phase inverter module. To control torque, high speed current control is achieved by the PI controller and pulse width modulation (PWM) signals with 25 kHz carrier frequency, which is performed by 200 ${\mu}sec$ cycle. The speed controller computes the new direct current reference from the speed error and the PI control equation. The displacement value by handling the joystick is converted to reference speeds of right and left wheel motors using nonholonomic wheelchair kinematics. Experimental results show that the presented control system is enough to implement a speed servo in wheelchair driving.

  • PDF

Biomechanical Characteristics of Hand Rim Contact Orientation During Wheelchair Propulsion: A Literature Review (표준형 휠체어 추진시 휠손잡이 촉수위치 특성에 관한 연구)

  • Kwon, Hyuk-Cheol;Kong, Jin-Yong
    • Physical Therapy Korea
    • /
    • v.9 no.2
    • /
    • pp.19-32
    • /
    • 2002
  • The purpose of this paper is to provide the reader with a pertinent information and research trends of biomechanics in wheelchair propulsion. Biomechanical studies for wheelchair propulsion mainly focus on the most suitable propulsion performance and methods for preventing upper extremity injuries. Recent issues have concentrated on wheelchair propulsion style and cycle mainly because of the high prevalence of repetitive strain injuries in the upper extremely such as shoulder impingement and carpel tunnel syndrome. Optimizing wheelchair propulsion performances as well as medical reflections are presented throughout the review. Information on the underlying musculoskeletal mechanisms of wheelchair propulsion has been introduced through a combination of data collection under experimental conditions and a more fundamental mathematical modelling approach. Through a synchronized analysis of the movement pattern and muscular activity pattern, insight has been gained in the wheelchair propulsion dynamics of people with a different level of disability (various level of physical activity and functional potential). Through mathematical modelling simulation, and optimization (minimizing injury and maximizing performance), underlying musculoskeletal mechanisms during Wheelchair propulsion is investigated.

  • PDF

The Effect of Wheelchair Propulsion on Carpal Tunnel Syndrome of Wrist Joint

  • Kong, Jin-Yong;Kwon, Hyuk-Cheol;Chang, Ki-Yeon;Jeong, Dong-Hoon
    • Physical Therapy Korea
    • /
    • v.11 no.4
    • /
    • pp.7-17
    • /
    • 2004
  • Individuals who propel wheelchairs have a high prevalence of upper extremity injuries (i.e., carpal tunnel syndrome, elbow/shoulder tendonitis, impingement syndrome). Musculoskeletal injuries can result from overuse or incorrect use of manual wheelchairs, and can hinder rehabilitation efforts. To better understand the mechanisms of upper extremity injuries, this study investigates the motion of the wrist during wheelchair propulsion. This study also examines changes in the variables that occur with fatiguing wheelchair propulsion to determine how the time parameters of wheelchair propulsion and the state of fatigue influence the risk of injury. A two dimensional (2-D) analysis of wrist movement during the wheelchair stroke was performed. Twenty subjects propelled a wheelchair handrim on a motor-driven treadmill at two different velocities (50, 70 m/min). The results of this study were as follows; The difference in time parameters of wheelchair propulsion (cadence, cycle time, push time, recovery time, and PSP ratio) at two different velocities was statistically significant. The wrist kinematic characteristics had statistically significant differences at two different velocities, but wrist radial deviation and elbow flexion/extension had no statistically significant differences. There were statistically significant differences in relation to fatigue in the time parameter of wheelchair propulsion (70 m/min) between initial 1 minute and final 1 minute. The wrist kinematic characteristics between the initial 1 minute and final 1 minute in relation to fatigue had statistically significant differences but the wrist flexion-extension (50 m/min) had no statistically significant differences. According to the results, the risk of musculoskeletal injuries is increased by fatigue from wheelchair propulsion. To prevent musculoskeletal injuries, wheelchair users should train in a muscle endurance program and consider wearing a splinting/grove. Moreover, wheelchair users need education on propulsion posture, suitable joint position, and proper recovery patterns of propulsion.

  • PDF

Design and Manufacture of Improved Obstacle-Overcoming type Indoor Moving and Lifting Electric Wheelchair (향상된 장애물 극복형 실내 이·승강 전동휠체어의 설계 및 제작)

  • Kim, Young-Pil;Ham, Hun-Ju;Hong, Sung-Hee;Ko, Seok-Cheol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.11
    • /
    • pp.851-860
    • /
    • 2020
  • With an increase in the aging population and a rising social interest in health and welfare, studies to improve healthcare in the elderly are being actively conducted. This study attempted to improve the current design and manufacture of elevating electric wheelchairs to enhance user safety and convenience. Seat design based on the user's body shape, convenience while boarding or alighting, caster turning radius and, safety and stability features that prevent shaking when the user gets up or sits down were improved. A driving experiment was conducted to evaluate the operation of the indoor electric wheelchair designed and manufactured with these additional functionalities. During the test, the performance parameters evaluated were continuous driving time, turning radius, maximum lifting and lowering load, maximum lifting height, noise level, minimum distance sensing by the driving auxiliary sensor, ability to interact with server and app programs, and the duty cycle maximum error rate. The test confirmed that this improved electric wheelchair successfully met target parameters. In a future study, we will evaluate this improved electric wheelchair from a user's perspective for its usability parameters, such as satisfaction, convenience and stability.

A Study on Development of ECS for Severly Handicaped (중증 장애인을 위한 생활환경 제어장치개발에 관한 연구)

  • 임동철;이행세;홍석교;이일영
    • Journal of Biomedical Engineering Research
    • /
    • v.24 no.5
    • /
    • pp.427-434
    • /
    • 2003
  • In this paper, we present a speech-based Environmental Control System(ECS) and its application. In the concrete, an ECS using the speech recognition and an portable wheelchair lift control system with the speech synthesis are developed through the simulation and the embodiment. The developed system apply to quadriplegic man and we evaluate the result of physical effect and of mental effect. Speech recognition system is constructed by real time modules using HMM model. For the clinical application of the device, we investigate the result applied to 54-years old quadriplegic man during a week through the questionnaires of Beck Depression Inventory and of Activity Pattern Indicator. Also the motor drive control system of potable wheelchair lift is implemented and the mechanical durability is tested by structural analysis. Speech recognition rate results in over 95% through the experiment. The result of the questionnaires shows higher satisfaction and lower nursing loads. In addition, the depression tendency of the subject were decreased. The potable wheelchair lift shows good fatigue life-cycle as the material supporting the upper wheelchair and shows the centroid mobility of safety. In this paper we present an example of ECS which consists of real-time speech recognition system and potable wheelchair lift. Also the experiments shows needs of the ECS for korean environments. This study will be the base of a commercial use.