• Title/Summary/Keyword: Cycle threshold value

Search Result 47, Processing Time 0.025 seconds

Sex Ratio Determination by Quantitative Real Time PCR using Amelogenin Gene in Porcine Sperm

  • Hwang, You-Jin;Bae, Mun-Sook;Yang, Jae-Hun;Kim, Bo-Kyoung;Kim, Sang-Ok;Lee, Eun-Soo;Choi, Sun-Gyu;Kwon, Ye-Ri;Seo, Min-Hae;Park, Choon-Keun;Kim, Dae-Young
    • Journal of Embryo Transfer
    • /
    • v.24 no.3
    • /
    • pp.225-230
    • /
    • 2009
  • Sex-sorting of sperm is an assisted reproductive technology (ART) used by the livestock industry for the mass production of animals of a desired sex. The standard method for sorting sperm is the detection of DNA content differences between X and Y chromosome-bearing sperm by flow cytometry. However, this method has variable efficiency and therefore requires verification by a second method. We have developed a sex determination method based on quantitative real-time polymerase chain reaction (qPCR) of the porcine amelogenin (AMEL) gene. The AMEL gene is present on both the X and the Y chromosome, but the length and sequence of its noncoding regions differ between the X and Y chromosomes. By measuring the threshold cycle (Ct) of qPCR, we were able to calculate the relative frequency of X chromosome. Two sets of AMEL primers were used in these studies. One set (AME) targeted AMEL gene sequences present in both X and Y chromosome, but produced PCR products of different lengths for each chromosome. The other set (AXR) bound to AMEL gene sequences present on the X chromosome but absent esholthe Y-chromosome. Relative product levels were calculated by normalizing the AXR fluorescence to the AME fluorescence. The AMEL method accurately predicted the sex ratios of boar sperm, demonstrating that it has potential value as a sex determination method.

Quantitative PCR for Etiologic Diagnosis of Methicillin-Resistant Staphylococcus aureus Pneumonia in Intensive Care Unit

  • Kwon, Sun-Jung;Jeon, Tae-Hyeon;Seo, Dong-Wook;Na, Moon-Joon;Choi, Eu-Gene;Son, Ji-Woong;Yoo, Eun-Hyung;Park, Chang-Gyo;Lee, Hoi-Young;Kim, Ju-Ock;Kim, Sun-Young;Kang, Jae-Ku
    • Tuberculosis and Respiratory Diseases
    • /
    • v.72 no.3
    • /
    • pp.293-301
    • /
    • 2012
  • Background: Ventilator-associated pneumonia (VAP) requires prompt and appropriate treatment. Since methicillin-resistant Staphylococcus aureus (MRSA) is a frequent pathogen in VAP, rapid identification of it, is pivotal. Our aim was to evaluate the utility of quantitative polymerase chain reaction (qPCR) as a useful method for etiologic diagnoses of MRSA pneumonia. Methods: We performed qPCR for mecA, S. aureus-specific femA-SA, and S. epidermidis-specific femA-SE genes from bronchoalveolar lavage or bronchial washing samples obtained from clinically-suspected VAP. Molecular identification of MRSA was based on the presence of the mecA and femA-SA gene, with the absence of the femA-SE gene. To compensate for the experimental and clinical conditions, we spiked an internal control in the course of DNA extraction. We estimated number of colony-forming units per mL (CFU/mL) of MRSA samples through a standard curve of a serially-diluted reference MRSA strain. We compared the threshold cycle (Ct) value with the microbiologic results of MRSA. Results: We obtained the mecA gene standard curve, which showed the detection limit of the mecA gene to be 100 fg, which corresponds to a copy number of 30. We chose cut-off Ct values of 27.94 (equivalent to $1{\times}10^4$ CFU/mL) and 21.78 (equivalent to $1{\times}10^5$ CFU/mL). The sensitivity and specificity of our assay were 88.9% and 88.9% respectively, when compared with quantitative cultures. Conclusion: Our results were valuable for diagnosing and identifying pathogens involved in VAP. We believe our modified qPCR is an appropriate tool for the rapid diagnosis of clinical pathogens regarding patients in the intensive care unit.

A Non-Periodic Synchronization Algorithm using Address Field of Point-to-Point Protocol in CDMA Mobile Network (CDMA이동망에서 점대점 프로토콜의 주소영역을 이용한 비주기적 동기 알고리즘)

  • Hong, Jin-Geun;Yun, Jeong-O;Yun, Jang-Heung;Hwang, Chan-Sik
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.26 no.8
    • /
    • pp.918-929
    • /
    • 1999
  • 동기식 스트림 암호통신 방식을 사용하는 암호통신에서는 암/복호화 과정 수행시 암호통신 과정에서 발생하는 사이클슬립으로 인해 키수열의 동기이탈 현상이 발생되고 이로 인해 오복호된 데이타를 얻게된다. 이러한 위험성을 감소하기 위한 방안으로 현재까지 암호문에 동기신호와 세션키를 주기적으로 삽입하여 동기를 이루는 주기적인 동기암호 통신방식을 사용하여 왔다. 본 논문에서는 CDMA(Cellular Division Multiple Access) 이동망에서 데이타서비스를 제공할 때 사용되는 점대점 프로토콜의 주소영역의 특성을 이용하여 단위 측정시간 동안 측정된 주소비트 정보와 플래그 패턴의 수신률을 이용하여 문턱 값보다 작은경우 동기신호와 세션키를 전송하는 비주기적인 동기방식을 사용하므로써 종래의 주기적인 동기방식으로 인한 전송효율성 저하와 주기적인 상이한 세션키 발생 및 다음 주기까지의 동기이탈 상태의 지속으로 인한 오류확산 등의 단점을 해결하였다. 제안된 알고리즘을 링크계층의 점대점 프로토콜(Point to Point Protocol)을 사용하는 CDMA 이동망에서 동기식 스트림 암호 통신방식에 적용시 동기이탈율 10-7의 환경에서 주기가 1sec인 주기적인 동기방식에서 요구되는 6.45x107비트에 비해 3.84x105비트가 소요됨으로써 전송율측면에서의 성능향상과 오복호율과 오복호 데이타 비트측면에서 성능향상을 얻었다. Abstract In the cipher system using the synchronous stream cipher system, encryption / decryption cause the synchronization loss (of key arrangement) by cycle slip, then it makes incorrect decrypted data. To lessen the risk, we have used a periodic synchronous cipher system which achieve synchronization at fixed timesteps by inserting synchronization signal and session key. In this paper, we solved the problem(fault) like the transfer efficiency drops by a periodic synchronous method, the periodic generations of different session key, and the incorrectness increases by continuing synchronization loss in next time step. They are achieved by the transfer of a non-periodic synchronous signal which carries synchronous signal and session key when it is less than the threshold value, analyzing the address field of point-to-point protocol, using the receiving rate of address bits information and flag patterns in the decision duration, in providing data services by CDMA mobile network. When the proposed algorithm is applied to the synchronous stream cipher system using point-to-point protocol, which is used data link level in CDMA mobile network, it has advanced the result in Rerror and Derror and in transmission rate, by the use of 3.84$\times$105bits, not 6.45$\times$107bits required in periodic synchronous method, having lsec time step, in slip rate 10-7.

An adaptive keystream resynchronization algorithm by using address field of LAPB (LAPB의 주소 영역을 이용한 적응 난수열 재동기 알고리즘)

  • 윤장홍;이주형;황찬식;양상운
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.10
    • /
    • pp.2181-2190
    • /
    • 1997
  • The synchronous stream cipher has the problem of synchronization loss by cycle slip. Synchronization loss make the state which sender and receiver can't communicate and it may make the receiving system disordered. To lessen the risk, we usually use a continuous resynchronization which achieve resynchronization at fixed timesteps by inserting synchronization pattern and session key. While we can get effectively resynchronizationby continuous resynchronization, there are some problems. In this paper, we proposed an adaptive resynchronization algorithm for cipher system using LAPB protocol. It is able to solve the problem of the continunous resynchronization.The proposed adaptive algorithm make resynchronization only in the case that the resynchronization is occurred by analyzing the address field of LAPB. It measure the receiving rate of the address field in the decesion duration. If the receiving rate is smaller than threshold value, it make resynchronization or not. By using adaptively resynchronization, it solves the problems of continunous resynchronization. When the proposed adaptive algorithm is applied to the synchronous stream cipher system which is used in X.25 packet network, it reduced the time for resynchronization by ten times. It means that 11.3% of total data for transmit is compressed.

  • PDF

An adaptive resynchronization technique for stream cipher system in HDLC protocol (HDLC 프로토콜에서 운용되는 동기식 스트림 암호 통신에 적합한 적응 난수열 재동기 기법)

  • 윤장홍;황찬식
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.9
    • /
    • pp.1916-1932
    • /
    • 1997
  • The synchronous stream cipher which require absoulte clock synchronization has the problem of synchronization loss by cycle slip. Synchronization loss makes the state which sender and receiver can't communicate with each other and it may break the receiving system. To lessen the risk, we usually use a continuous resynchronization method which achieve resynchronization at fixed timesteps by inserting synchronization pattern and session key. While we can get resynchronization effectively by continuous resynchroniation, there are some problems. In this paper, we proposed an adaptive resynchronization algorithm for cipher system using HDLC protocol. It is able to solve the problem of the continuous resynchronization. The proposed adaptive algorithm make resynchronization only in the case that the resynchronization is occurred by analyzing the address field of HDLC. It measures the receiving rate of theaddress field in the decision duration. Because it make resynchronization only when the receiving rate is greateer than the threshold value, it is able to solve the problems of continuous resynchronization method. When the proposed adaptive algorithm is applied to the synchronous stream cipher system in packet netork, it has addvance the result in R_e and D_e.

  • PDF

A Study On Radiation Detection Using CMOS Image Sensor (CMOS 이미지 센서를 사용한 방사선 측정에 관한 연구)

  • Lee, Joo-Hyun;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.19 no.2
    • /
    • pp.193-200
    • /
    • 2015
  • In this paper, we propose the radiation measuring algorithm and the device composition using CMOS image sensor. The radiation measuring algorithm using CMOS image sensor is based on the radiation particle distinguishing algorithm projected to the CMOS image sensor and accumulated and average number of pixels of the radiation particles projected to dozens of images per second with CMOS image sensor. The radiation particle distinguishing algorithm projected to the CMOS image sensor measures the radiation particle images by dividing them into R, G and B and adjusting the threshold value that distinguishes light intensity and background from the particle of each image. The radiation measuring algorithm measures radiation with accumulated and average number of radiation particles projected to dozens of images per second with CMOS image sensor according to the preset cycle. The hardware devices to verify the suggested algorithm consists of CMOS image sensor and image signal processor part, control part, power circuit part and display part. The test result of radiation measurement using the suggested CMOS image sensor is as follows. First, using the low-cost CMOS image sensor to measure radiation particles generated similar characteristics to that from measurement with expensive GM Tube. Second, using the low-cost CMOS image sensor to measure radiation presented largely similar characteristics to the linear characteristics of expensive GM Tube.

Age-dependent immune response in pigs against foot-and-mouth disease virus in vitro

  • Roh, Jae-Hee;Bui, Ngoc Anh;Lee, Hu Suk;Bui, Vuong Nghia;Dao, Duy Tung;Vu, Thanh Thi;Hoang, Thuy Thi;So, Kyoung-Min;Yi, Seung-Won;Kim, Eunju;Hur, Tai-Young;Oh, Sang-Ik
    • Journal of Animal Science and Technology
    • /
    • v.63 no.6
    • /
    • pp.1376-1385
    • /
    • 2021
  • Foot-and-mouth disease, one of the most contagious diseases in cloven-hoofed animals, causes significant economic losses. The pathogenesis of foot-and-mouth disease virus (FMDV) infection is known to differ with age of the animals. In this study, we aimed to reveal the difference in immunological response in the initial stage of FMDV infection between piglets and adult pigs. Peripheral blood mononuclear cells (PBMCs) were isolated from 3 piglets (8 weeks old) and 3 pigs (35 weeks old) that were not vaccinated against FMDV. O-type FMDV (2 × 102 median tissue culture infectious dose) was inoculated into porcine PBMCs and the cells were incubated at 37.0℃ under 5% CO2 for various time periods (0, 1, 3, 6, 12, 24, and 48 h). The total RNA was obtained from the FMDV-inoculated PBMCs after each time point, and the virus titer was investigated in these RNA samples. Furthermore, dynamics of mRNA expression of the six tested cytokines (interferon [IFN]-α, IFN-γ, interleukin [IL]-6, IL-8, IL-10, and tumor necrosis factor [TNF]-α) in FMDV-inoculated porcine PBMCs were evaluated by time-series analysis to determine the differences, if any, based on the age of the pigs. The PBMCs of piglets contained the highest quantity of FMDV mRNA at 6 hours post-inoculation (hpi), and the PBMCs of pigs had the highest quantity of FMDV mRNA at 3 hpi. The mean cycle threshold-value in the PBMCs steadily decreased after the peak time point in the piglets and pigs (6 and 3 hpi, respectively). The dynamics of mRNA expression of all cytokines except TNF-α showed age-dependent differences in FMDV-inoculated PBMCs. The mRNA expression of most cytokines was more pronounced in the piglets than in the pigs, implying that the immune response against FMDV showed an age-dependent difference in pigs. In conclusion, within 48 hpi, the 8-week-old piglets responded more rapidly and were more sensitive to FMDV infection than the 35-week-old pigs, which could be associated with the difference in the pathogenesis of FMDV infection among the pigs. These results provide valuable insights into the mechanisms underlying the age-dependent differences in immune response in pigs against FMDV infection.