• Title/Summary/Keyword: Cycle ratio

Search Result 1,573, Processing Time 0.024 seconds

Cycle-to-Cycle Fluctuations in a Spark Ignition Engine at Low Speed and Load

  • Han, Sung Bin;Hwang, Sung Il
    • Journal of Energy Engineering
    • /
    • v.22 no.2
    • /
    • pp.205-210
    • /
    • 2013
  • Cycle-to-cycle variation has long been recognized as limiting the range of operating conditions of spark ignition engines, in particular, under lean and highly diluted operation conditions. At a part load, some of the cycles tend to knock, while others may have incomplete combustion by the time the exhaust valve opens. An experimental study has been performed in order to evaluate the relative contribution of several relevant parameters on the cyclic variability in spark ignition engines. In general, the stability of engine operation is improved with fuel injector according to the optimal injection timing, but the stability of engine operation at idle is not improved compared with a practical gasoline engine. In this study, we investigated the relationship of the effect of operating conditions for the stability at low speed and load.

Simulation of a two-stage absorption heat pump cycle using treated sewage (하수처리수 이용 흡수식 열펌프 사이클의 시뮬레이션)

  • 이용화;신현준;최국광
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.3
    • /
    • pp.422-430
    • /
    • 1999
  • This paper concerns the study of a two-stage absorption heat pump cycle to utilize treated sewage. This two-stage cycle consists of coupling double-effect with parallel or series flow type and single effect cycle so that the first stage absorber and condenser produces hot water to evaporate refrigerant in the evaporator of the second stage. The effects of operating variables such as absorber temperature on the coefficient of performance have been studied for two-stage absorption heat pump cycle. The working fluid is lithium bromide and water solution. The efficiency of the two-stage absorption heat pump cycle has been studied and simulation results show that higher coefficient of performance could be obtained for the first stage with parallel flow type. The optimum ratio of solution distribution can be shown by considering the COP, the crystallization of solution and the generator temperature.

  • PDF

Performance Characteristics of OTEC(Ocean Thermal Energy Conversion) Power Cycle with Vapor-Liquid Ejector (증기-액 이젝터를 적용한 해양온도차발전 시스템의 성능 특성)

  • Yoon, Jung-In;Son, Chang-Hyo;Kim, Hyeon-Uk;Ha, Soo-Jung;Lee, Ho-Saeng;Kim, Hyun-Ju
    • Journal of Power System Engineering
    • /
    • v.18 no.5
    • /
    • pp.88-93
    • /
    • 2014
  • In this paper, the performance analysis of condensation and evaporation capacity, turbine work and efficiency of the OTEC power system using vapor-liquid Ejector is presented to offer the basic design data for the operating parameters of the system. The working fluid used in this system is $CO_2$. The operating parameters considered in this study include the vapor quality at heat exchanger outlet, pressure ratio of ejector and inlet pressure of low turbine, mass flow ratio of separator at condenser outlet. The main results were summarized as follows. The efficiency of the OTEC power cycle has an enormous effect on the mass flow ratio of separator at condenser outlet. With a thorough grasp of these effects, it is possible to design the OTEC power cycle proposed in this study.

A Study on the Prediction of Fatigue Life in 2024-T3 Aluminium using X-ray Half-Value Breadth (X선 반가폭을 이용한 Al 2024-T3 합금의 피로수명예측에 관한 연구)

  • 조석수;김순호;주원식
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.1
    • /
    • pp.145-152
    • /
    • 2000
  • X-ray diffraction method detects change of crystal lattice distance under material surface using diffraction angle 2$\theta$. This technique can be applied to the behavior on slip band and micro crack due to material degradation. The relation between half-value breadth and number of cycle has three stages which constitute rapid decrease in initial number of cycles, slight decrease in middle number of cycles and rapid decrease in final number of cycles. The ratio of half-value breadth takes a constant value on B/B$_{0}$-N diagram with loading condition except early part of fatigue life. The ratio of half-value breadth B/B$_{0}$ with respect to number of cycle to failure N$_{f}$ has linear behavior on B/B$_{0}$-log N$_{f}$ diagram. Therefore, in this paper the estimation of fatigue life by average gradient method has much less estimated mean error than the estimation of fatigue life by log B/B$_{0}$-log N/N$_{f}$ relation.elation.ation.

  • PDF

An Experimental Study on the Freeze-Thaw Resistance of Concrete Incorporating Waste Foundry Sand (폐주물사를 혼입한 콘크리트의 동결-융해 저항성에 관한 실험적 연구)

  • Yong, Suk-Ung;Lee, Joo-Hyung;Hong, Chang-Woo;Yun, Kyong-Ku;Park, Je-Seon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04a
    • /
    • pp.117-122
    • /
    • 1998
  • Concrete structures has been deteriorated by the freezing and thawing due to temperature gap. This study was conducted to evaluate durabilite of concrete which are increasingly demanded recently. Therefore the research of durability must be executed for application of waste foundry sand concrete real structures. Concrete durability must be executed for application of waste foundry sand concrete real structures. Concrete durability properties incorporating waste foundry sand was performed with the variable of W/C ratio, Sand/Waste foundry sand ratio and Air entrainment-Non air entrainment. Cylinder specimens were made and subjected to freezing and thawing cycle at $-18^{\cire}C$ and $4^{\cire}C$. Dynamic modulus of elasticity were evaluated as F/T cycle increase. The results show that strength of concrete is increased the W/C ratio decrease, the Sand/Waste foundry sand ratio increase when the concrete contains AE agent and decreasing WC ratio and AE concrete makes improved resistance of freezing and thawing improved. Especially, resistance of freezing and thawing is improved by Fine aggregate/Waste foundry sand ratio which is 50%, 25%, 0% in a row. Therefore it is turn out the waste foundry sand could be applied to concrete from the experiment.

  • PDF

Comparison of Dynamic Operation Performance of LNG Reliquefaction Processes based on Reverse Brayton Cycle and Claude Cycle (Reverse Brayton 사이클과 Claude 사이클 기반 LNG 재액화 공정의 동특성 운전성능 비교)

  • Shin, Young-Gy;Seo, Jung-A;Lee, Yoon-Pyo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.12
    • /
    • pp.775-780
    • /
    • 2008
  • A dynamic model to simulate LNG reliquefaction process has been developed. The model was applied to two candidate cycles for LNG reliquefaction process, which are Reverse Brayton and Claude cycles. The simulation was intended to simulate the pilot plant under construction for operation of the two cycles and evaluate their feasibility. According to the simulation results, both satisfy control requirements for safe operation of brazed aluminum plate-fin type heat exchangers. In view of energy consumption, the Reverse Brayton cycle is more efficient than the Claude cycle. The latter has an expansion valve in addition to the common facilities sharing with the Reverse Brayton cycle. The expansion valve is a main cause to the efficiency loss. It generates a significant amount of entropy associated with its throttling and increases circulation flow rates of the refrigerant and power consumption caused by its leaking resulting in lowered pressure ratio. It is concluded that the Reverse Brayton cycle is more efficient and simpler in control and construction than the Claude cycle.

Compression Power and Exergy Analysis in a Dry Ice Production Cycle with 3-stage Compression (3단압축 드라이아이스 제조사이클의 압축동력과 엑서지 해석)

  • 이근식
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.6
    • /
    • pp.550-560
    • /
    • 2000
  • In order to minimize compression power and analyze the cause of exergy loss for a dry ice production cycle with 3-stage compression, the variation of compression power was investigated and the exergy analysis was peformed for the cycle. In this cycle, $CO_2$, is used both as a refrigerant and as a raw material for dry ice. The behavior of compression power and irreversibility in the cycle were examined as a function of intermediate pressure. From this result, the conditions for the minimum compression power were obtained in terms of the first stage or the third stage pressure. In addition, the irreversibilities for the cycle were investigated with respect to the efficiency of compressor. Result shows that the optimum pressure is not consistent with the conventional pressure obtained from the equal-pressure-ratio assumption. This is mainly due to the change in mass flow rate of the intermediate stage compressor by the flash gas evaporation from the flash drums. Most important is that the present exergy analysis enabled us to find bad performance components for the cycle and informed us of methods to improve the cycle performance.

  • PDF

Comparison of Operation Performance of LNG Reliquefaction Process according to Reverse Brayton Cycle and Claude Cycle

  • Shin, Young-Gy;Seo, Jung-A;Lee, Yoon-Pyo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.17 no.4
    • /
    • pp.135-140
    • /
    • 2009
  • A dynamic model to simulate LNG reliquefaction process has been developed. The model was applied to two candidate cycles for LNG reliquefaction process, which are Reverse Brayton and Claude cycles. The simulation was intended to simulate the pilot plant under construction for operation of the two cycles and evaluate their feasibility. According to the simulation results, both satisfy control requirements for safe operation of brazed aluminum plate-fin type heat exchangers. In view of energy consumption, the Reverse Brayton cycle is more efficient than the Claude cycle. The latter has an expansion valve in addition to the common facilities sharing with the Reverse Brayton cycle. The expansion valve is a main cause to the efficiency loss. It generates a significant amount of entropy associated with its throttling and increases circulation flow rates of the refrigerant and power consumption caused by its leaking resulting in lowered pressure ratio. It is concluded that the Reverse Brayton cycle is more efficient and simpler in control and construction than the Claude cycle.

A study on non-invasive SaO$_2$ measurement algorithm to improve on effect of the motion artifact (동잡음의 영향을 개선한 비관혈식 산소포화도 측정 알고리즘에 대한 연구)

  • 이준하
    • Progress in Medical Physics
    • /
    • v.11 no.2
    • /
    • pp.101-107
    • /
    • 2000
  • Pulse oximetry is a non-invasive optical method which measures arterial oxygen saturation with two different wavelength. We can obtain the pulsating component of the arterial blood superimposed on DC level attenuated by venous blood, skin and other nonpulsatile components. This study is based on computing algorithm of oxygen saturation using the integral ratio of pulsatile components. In this algorithm, we used the half cycle of the pulsatile signal rely on arterial contraction. It's period is about 1/4 in 1 cycle. In the result, Our algorithm with 1/4 period of 1 cycle is similar to existing model. Because of removal that A part have low amplitude and possession in long term from calculating, the effect of the motion-artifact is decrease.

  • PDF

The Design of a Linear Compressor Based on the Resonance Characteristics for the Air Conditioner (공진특성을 고려한 냉동/공조용 횡자속 선형압축기의 설계)

  • Hong, Yong-Ju;Park, Seong-Je;Kim, Hyo-Bong
    • 연구논문집
    • /
    • s.34
    • /
    • pp.39-46
    • /
    • 2004
  • The compressors in the air conditioner have the role of the pressurization and circulation of the refrigerant. The hermetic reciprocating compressors driven by rotary motor have been used for the air conditioner. The linear compressor has very simple structure and enhancement in the efficiency in comparison to that of conventional reciprocating compressor. The linear compressors are widely used for the small cryogenic refrigerator (below 1 kW), such as the Stirling refrigerator and pulse tube refrigerator. In the cryogenic application, the pressure ratio of the linear compressor is below 1.5, but the linear compressor for the air conditioner should overcome the high pressure ratio and the large pressure difference between the each sides of the piston. The resonance characteristics of the linear compressor has the significant impacts on the power consumption. To minimize the power consumption, the linear compressor should be operated at the resonance point. In the resonance characteristics, the role of the mechanical and gas spring should be considered. In present study, the cycle of the analysis of the vapor compression refrigeration cycle with the different refrigerants (R134a, R4l0a, R600a) and the designs of the linear compressor are performed. The effects of the stiffness of the mechanical spring on the electromagnetic forces would be discussed. Finally, the results show the design specification of the linear compressor for the air conditioner.

  • PDF