• Title/Summary/Keyword: Cycle property

Search Result 365, Processing Time 0.022 seconds

Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2012 (설비공학 분야의 최근 연구 동향 : 2012년 학회지 논문에 대한 종합적 고찰)

  • Han, Hwataik;Lee, Dae-Young;Kim, Sa Ryang;Kim, Hyun-Jung;Choi, Jong Min;Park, Jun-Seok;Kim, Sumin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.6
    • /
    • pp.346-361
    • /
    • 2013
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2012. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. The conclusions are as follows : (1) The research works on thermal and fluid engineering have been reviewed as groups of fluid machinery, pipes and valves, fuel cells and power plants, ground-coupled heat pumps, and general heat and mass transfer systems. Research issues are mainly focused on new and renewable energy systems, such as fuel cells, ocean thermal energy conversion power plants, and ground-coupled heat pump systems. (2) Research works on the heat transfer area have been reviewed in the categories of heat transfer characteristics, pool boiling and condensing heat transfer, and industrial heat exchangers. Researches on heat transfer characteristics included the results for natural convection in a square enclosure with two hot circular cylinders, non-uniform grooved tube considering tube expansion, single-tube annular baffle system, broadcasting LED light with ion wind generator, mechanical property and microstructure of SA213 P92 boiler pipe steel, and flat plate using multiple tripping wires. In the area of pool boiling and condensing heat transfer, researches on the design of a micro-channel heat exchanger for a heat pump, numerical simulation of a heat pump evaporator considering the pressure drop in the distributor and capillary tubes, critical heat flux on a thermoexcel-E enhanced surface, and the performance of a fin-and-tube condenser with non-uniform air distribution and different tube types were actively carried out. In the area of industrial heat exchangers, researches on a plate heat exchanger type dehumidifier, fin-tube heat exchanger, an electric circuit transient analogy model in a vertical closed loop ground heat exchanger, heat transfer characteristics of a double skin window for plant factory, a regenerative heat exchanger depending on its porous structure, and various types of plate heat exchangers were performed. (3) In the field of refrigeration, various studies were executed to improve refrigeration system performance, and to evaluate the applicability of alternative refrigerants and new components. Various topics were presented in the area of refrigeration cycle. Research issues mainly focused on the enhancement of the system performance. In the alternative refrigerant area, studies on CO2, R32/R152a mixture, and R1234yf were performed. Studies on the design and performance analysis of various compressors and evaporator were executed. (4) In building mechanical system research fields, twenty-nine studies were conducted to achieve effective design of mechanical systems, and also to maximize the energy efficiency of buildings. The topics of the studies included heating and cooling, HVAC system, ventilation, renewable energy systems, and lighting systems in buildings. New designs and performance tests using numerical methods and experiments provide useful information and key data, which can improve the energy efficiency of buildings. (5) In the fields of the architectural environment, studies for various purposes, such as indoor environment, building energy, and renewable energy were performed. In particular, building energy-related researches and renewable energy systems have been mainly studied, reflecting interests in global climate change, and efforts to reduce building energy consumption by government and architectural specialists. In addition, many researches have been conducted regarding indoor environments.

Recent Progress in Air Conditioning and Refrigeration Research - A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2002 and 2003 - (공기조화, 냉동 분야의 최근 연구 동향 -2002년 및 2003년 학회지 논문에 대한 종합적 고찰 -)

  • Chung Kwang-Seop;Kim Min Soo;Kim Yongchan;Park Kyoung Kuhn;Park Byung-Yoon;Cho Keumnam
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.12
    • /
    • pp.1234-1268
    • /
    • 2004
  • A review on the papers published in the Korean Journal of Air-Conditioning and Refrigerating Engineering in 2002 and 2003 has been carried out. Focus has been put on current status of research in the aspect of heating, cooling, air-conditioning, ventilation, sanitation and building environment/design. The conclusions are as follows. (1) Most of fundamental studies on fluid flow were related with heat transportation in diverse facilities. Drop formation and rivulet flow on solid surfaces were interesting topics related with condensation augmentation. Research on micro environment considering flow, heat transfer, humidity was also interesting to promote comfortable living environment. It can be extended considering biological aspects. Development of fans and blowers of high performance and low noise were continuing research topics. Well developed CFD technologies were widely applied for analysis and design of various facilities and their systems. (2) Heat transfer characteristics of enhanced finned tube heat exchangers and heat sinks were extensively investigated. Experimental studies on the boiling heat transfer, vortex generators, fluidized bed heat exchangers, and frosting and defrosting characteristics were also conducted. In addition, the numerical simulations on various heat exchangers were performed and reported to show heat transfer characteristics and performance of the heat exchanger. (3) A review of the recent studies shows that the performance analysis of heat pump have been made by various simulations and experiments. Progresses have been made specifically on the multi-type heat pump systems and other heat pump systems in which exhaust energy is utilized. The performance characteristics of heat pipe have been studied numerically and experimentally, which proves the validity of the developed simulation programs. The effect of various factors on the heat pipe performance has also been examined. Studies of the ice storage system have been focused on the operational characteristics of the system and on the basics of thermal storage materials. Researches into the phase change have been carried out steadily. Several papers deal with the cycle analysis of a few thermodynamic systems which are very useful in the field of air-conditioning and refrigeration. (4) Recent studies on refrigeration and air-conditioning systems have focused on the system performance and efficiency enhancement when new alternative refrigerants are applied. Heat transfer characteristics during evaporation and condensation are investigated for several tube shapes and new alternative refrigerants including natural refrigerants. Efficiency of various compressors and performance of new expansion devices are also dealt with for better design of refrigeration/air conditioning system. In addition to the studies related with thermophysical properties of refrigerant mixtures, studies on new refrigerants are also carried out. It should be noted that the researches on two-phase flow are constantly carried out. (5) A review of the recent studies on absorption refrigeration system indicates that heat and mass transfer enhancement is the key factor in improving the system performance. Various experiments have been carried out and diverse simulation models have been presented. Study on the small scale absorption refrigeration system draws a new attention. Cooling tower was also the research object in the respect of enhancement its efficiency, and performance analysis and optimization was carried out. (6) Based on a review of recent studies on indoor thermal environment and building service systems, it is noticed that research issues have mainly focused on several innovative systems such as personal environmental modules, air-barrier type perimeterless system with UFAC, radiant floor cooling system, etc. New approaches are highlighted for improving indoor environmental conditions and minimizing energy consumption, various activities of building energy management and cost-benefit analysis for economic evaluation.

Effect of Astragali Radix and Opuntia humifusa on Quality of Red Ginseng Drink (황기 및 천년초 첨가가 홍삼음료의 품질에 미치는 영향)

  • You, SangGuan;Kim, Sung-Won;Jung, Kyung-Hwan;Moon, Sung-Kwon;Yu, Kwang-Won;Choi, Won-Seok
    • Food Engineering Progress
    • /
    • v.14 no.4
    • /
    • pp.299-306
    • /
    • 2010
  • This study was performed to develop new functional red ginseng drinks with Astragali Radix and Opuntia humifusa. Optimum extraction conditions such as solvent property and temperature for Astragali Radix were determined by distilled water vs. ethanol (95%) ratio (0:100, 25:75, 50:50, 75:25) and 60 vs. $80^{\circ}C$. Water-soluble extracts at $80^{\circ}C$ showed higher antioxidant activities than fat-soluble extracts at $60^{\circ}C$. Viscosities of 1-2% (w/v) of Opuntia humifusa solution were similar to that of the 0.1% guar gum solution. Addtion of Astragali Radix (3% and 5%, w/v) and Opuntia humifusa (1.2%, w/v), especially, had effect on the changes of pH of the red ginseng solution(5%, w/v) during storage for 7 days. A significant difference during the storage was shown in total plate counts by addition of Opuntia humifusa (1.2%, w/v) and microorganisms were reduced by six log cycles. Significant antiproliferation effects of red ginseng (5%, w/v) solution with Astragali Radix (3% & 5%, w/v) and Opuntia humifusa (1.2%, w/v) on Colon26m-3.1 carcinoma (colorectal carcinoma) cell and U87-MG neuronale glioblastoma (brain carcinoma) cell were not observed.

Analysis of the Characteristics of Water Quality Difference Occurring between High Tide and Low Tide in Masan Bay (만조와 간조시 마산만 수질의 농도차 발생 특성의 분석)

  • Yoo, Youngjin;Kim, Sung Jae
    • Journal of Wetlands Research
    • /
    • v.21 no.2
    • /
    • pp.102-113
    • /
    • 2019
  • Slack-tide sampling was carried out at 6 stations at high and low tide for a tidal cycle during spring tide of the early summer (June) and summer (July, August) of 2016 to determine the difference of water quality according to tide in Masan Bay, Korea. The mixing regime of all the water quality components investigated was well explained through the correlation with SAL. In the early summer and summer, TURB, DSi and NNN which mainly flow into the bay from the streams and SS, COD, AMN and $H_2S$ which mainly indicate the internal sink and source materials have a property of conservative mixing and non-conservative mixing, respectively. The conservative mixing showed a good linear relationship of the water quality between high and low tide, and the non-conservative mixing showed a variation of different pattern each other. Factor analysis performed on the concentration difference data sets between high and low tide helped in identifying the principal latent variables for them. In early summer, multiple effects (tidal action, natural influx and internal sinks and sources etc.) acted in combination for the differences to be distributed evenly in four factors (VF1~4), since there were few allochthonous inputs as a low-water season. On the contrary, in summer, the parameters showing large concentration difference at ST-1 affected by stream water were concentrated in one factor (VF1) and clearly distinguished from the parameters affected by the internal sinks and sources. In fact, there is no estuary (bay) that always maintains steady state flow conditions. The mixing regime of an estuary might be changed at any time due to the change of flushing time, and furthermore the change of end-member conditions due to the internal sinks and sources makes the occurrence of concentration difference inevitable. Therefore, when investigating the water quality of the estuary, it is necessary to take a sampling method considering the tide to obtain average water quality data.

Dynamical Study on the Blasting with One-Free-Face to Utilize AN-FO Explosives (초유폭약류(硝油爆藥類)를 활용(活用)한 단일자유면발파(單一自由面發破)의 역학적(力學的) 연구(硏究))

  • Huh, Ginn
    • Economic and Environmental Geology
    • /
    • v.5 no.4
    • /
    • pp.187-209
    • /
    • 1972
  • Drilling position is one of the most important factors affecting on the blasting effects. There has been many reports on several blasting factors of burn-cut by Messrs. Brown and Cook, but in this study the author tried to compare drilling positions of burn-cut to pyramid-cut, and also to correlate burn-cut effects of drilling patterns, not being dealt by Prof. Ito in his theory, which emphasized on dynamical stress analysis between explosion and free face. According to former theories, there break out additional tensile stress reflected at the free face supplemented to primary compressive stress on the blasting with one-free-face. But with these experimented new drilling patterns of burn-cut, more free faces and nearer distance of each drilling holes make blasting effects greater than any other methods. To promote the above explosive effect rationary, it has to be considered two important categories under-mentioned. First, unloaded hole in the key holes should be drilled in wider diameter possibly so that it breaks out greater stress relief. Second, key holes possibly should have closer distances each other to result clean blasting. These two important factors derived from experiments with, theories of that the larger the dia of the unloaded hole, it can be allowed wider secondary free faces and closes distances of each holes make more developed stress relief, between loaded and unloaded holes. It was suggested that most ideal distance between holes is about 4 clearance in U. S. A., but the author, according to the experiments, it results that the less distance allow, the more effective blasting with increased broken rock volume and longer drifted length can be accomplished. Developed large hole burn-cut method aimed to increase drifting length technically under the above considerations, and progressive success resulted to achieve maximum 7 blasting cycles per day with 3.1m drifting length per cycle. This achievement originated high-speed-drifting works, and it was also proven that application of Metallic AN-FO on large hole burn-cut method overcomes resistance of one-free-face. AN-FO which was favored with low price and safety handling is the mixture of the fertilizer or industrial Ammonium-Nitrate and fuel oil, and it is also experienced that it shows insensible property before the initiation, but once it is initiated by the booster, it has equal explosive power of Ammonium Nitrate Explosives (ANE). There was many reports about AN-FO. On AN-FO mixing ratio, according to these experiments, prowdered AN-FO, 93.5 : 6.5 and prilled AN-FO 94 : 6, are the best ratios. Detonation, shock, and friction sensities are all more insensitive than any other explosives. Residual gas is not toxic, too. On initation and propagation of the detonation test, prilled AN-FO is more effective than powered AN-FO. AN-FO has the best explosion power at 7 days elapsed after it has mixed. While AN-FO was used at open pit in past years prior to other conditions, the author developed new improved explosives, Metallic AN-FO and Underwater explosive, based on the experiments of these fundmental characteristics by study on its usage utilizing AN-FO. Metallic AN-FO is the mixture of AN-FO and Al, Fe-Si powder, and Underwater explosive is made from usual explosive and AN-FO. The explanations about them are described in the other paper. In this study, it is confirmed that the blasting effects of utilizing AN-FO explosives are very good.

  • PDF