• 제목/요약/키워드: Cycle of aluminum

검색결과 155건 처리시간 0.031초

알루미늄 합금의 초정밀 플라이커팅에 관한 연구 (A Study on Ultra-precision Fly-cutting of Aluminum Alloy)

  • 박순섭;이기용;김형모;황연
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.233-234
    • /
    • 2006
  • For the machining of freeform surface, fly cutting is one of the key technology to meet profile accuracy and surface roughness simultaneously. Fly cutting can be applied to manufacturing of optical components with complex profile. In this study aluminum alloy was machined in the process of ultra precision fly cutting and investigated optimum machining conditions in terms of feed-rate, pitch per cycle and depth of cut.

  • PDF

복합재 패춰의 열잔류응력 해석 (Analysis of Thermal Residual Stress in Composite Patches)

  • 김위대;김난호
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2000년도 추계학술발표대회 논문집
    • /
    • pp.63-66
    • /
    • 2000
  • This research addresses study on thermal residual stress of a composite patch repair of the edge cracked aluminium panel of aging aircraft. Composite patch repair is an efficient and economical technique to improve the damage tolerance of cracked metallic structures. These are thermal residual stresses due to the mismatch of coefficient of thermal expansion, and these are affected by the curing cycle of patch specimen. In this study, three curing cycles were selected for F.E. analysis. This study features the effect on composite patch and aluminum by thermal residual stress during crack propagation in aluminum plate.

  • PDF

Plastic energy approach prediction of fatigue crack growth

  • Maachou, Sofiane;Boulenouar, Abdelkader;Benguediab, Mohamed;Mazari, Mohamed;Ranganathan, Narayanaswami
    • Structural Engineering and Mechanics
    • /
    • 제59권5호
    • /
    • pp.885-899
    • /
    • 2016
  • The energy-based approach to predict the fatigue crack growth behavior under constant and variable amplitude loading (VAL) of the aluminum alloy 2024 T351 has been investigated and detailed analyses discussed. Firstly, the plastic strain energy was determined per cycle for different block load tests. The relationship between the crack advance and hysteretic energy dissipated per block can be represented by a power law. Then, an analytical model to estimate the lifetime for each spectrum is proposed. The results obtained are compared with the experimentally measured results and the models proposed by Klingbeil's model and Tracey's model. The evolution of the hysteretic energy dissipated per block is shown similar with that observed under constant amplitude loading.

슬러리 캐스팅과 흡인주조기술을 이용한 알루미늄 금형의 쾌속제작 (Rapid Tooling of Aluminum Mold Using Slurry Casting and Vacuum Sealed Casting)

  • 정해도;배원병
    • 한국주조공학회지
    • /
    • 제20권4호
    • /
    • pp.277-282
    • /
    • 2000
  • The RP&M (Rapid prototyping and Manufacturing) is the most appropriate technology for the small-lot production system, in which the production cycle is getting shorter owing to various needs from consumers. In this paper, RP&M is applied to a casting process. A casting process has a merit of being able to reflect complicated shapes at one time. But it has not been applied to the precision industry because of bad quality on surface. So we will improve characteristics of aluminum casting process using vacuum sealed casting process and porous ceramic mold which is made by slurry casting process.

  • PDF

국내외 제조업체 슬림커패시터의 비교분석 (The Comparison Analysis for Foreign and Domestic Slim Capacitors)

  • 임창근;김종민;김강동;박정원
    • 한국신뢰성학회지:신뢰성응용연구
    • /
    • 제12권1호
    • /
    • pp.25-33
    • /
    • 2012
  • As to display products are made slim, the diameter of aluminum electrolytic capacitor is smaller and the length is longer to be fitted in. These small diameter and long length are pointed as the disadvantageous design factors of the capacitor's life cycle. So, the most electronic makers want to use proven capacitors (or well-known) to secure reliability of the electric products. In this study, we carried out the comparison analysis with two domestic capacitors and one foreign made capacitor. We designated separators, rubber breather and debris as the main factors that effect on the lifetime of capacitors. From the comparison results, we suggested the improvement points of the aluminum electrolytic capacitor.

고강도 알루미늄에서의 균열닫힘이 미소 피로균열의 전파거동에 미치는 영향 (Crack Closure Effects on Small Fatigue Crack Growth Behavior in High Strength Aluminum)

  • 이현우
    • 한국정밀공학회지
    • /
    • 제7권4호
    • /
    • pp.55-64
    • /
    • 1990
  • The fatigue crack growth behavior of physically-short cracks(0.2${\Delta}K$ with $da/dN<1{\times}10^{-7}m/cycle$. The transition crack lengths where similtude with ${\Delta}K$ existed was between 1 and 2mm. The effective stress intensity factor range based on COD measurements gave better correlation between the physically-short and long cracks. Thus it can be considered that the crack closure effect is one of the main factors which causes the differences between these two cracks.

  • PDF

2017 - T 3 알미늄 合金 의 勞龜裂進展 과 龜裂닫힘現象 (Fatigue crack growth and crack closure in 2017-T3 Aluminum alloy)

  • 송지호;김일현;신용승
    • 대한기계학회논문집
    • /
    • 제4권2호
    • /
    • pp.47-53
    • /
    • 1980
  • Kikukawa-Compliance method using a conventional clip-on gauge was employed to investigate fatigue crack growth and crack closure in 2017-T3 aluminum alloy. The crack growth rate plot against stress intensity range .DELTA.K on a log-log diagram exhibits a bilinear form with a transition at the growth rate of 10$\^$-4/ mm/cycle. The bilinear form appears still in the plot of growth rate versus effective stress intensity range .DELTA.K$\_$eff/. Fatigue crack growth rate could be well represented by .DELTA.K$\_$eff. The experimental results indicate that the effective stress intensity range ratio U depends on the maximum stress intensity factor K$\_$max/, but the stress ratio R does not affect U. The crack opening stress intensity factor K$\_$op/ tends to increase with increasing K$\_$max/ and decrease with increasing .DELTA.K.

통기성 세라믹형을 이용한 알루미늄 신발금형의 쾌속제작 (Rapid Tooling of Aluminum Shoes Mold Using Porous Mold)

  • 정성일;정두수;김도경;정해도;조규갑
    • 한국정밀공학회지
    • /
    • 제16권11호
    • /
    • pp.62-67
    • /
    • 1999
  • The RP&M(Rapid Prototyping and Manufacturing) is the most appropriate technology for the small-lot production system, in which the production cycle is getting shorter owing to various needs from consumers. Recently RP products which are made of plastics, wax, and paper are used to verify the design of samples. But these products cannot be applied to the real mold because the strength enough to be a mold cannot be given by soft materials such as plastics. So RP products are copied to AFR(Al powder Filled Resin) molds or metal molds, which is called the RP&M. In this paper, RP&M is applied to a casting process. A porous casting mold, which is made from ceramic powder and binder, is used for rapid tooling of aluminum shoes molds.

  • PDF

분말피복압연법에 의해 제조된 Al 분말성형체의 반복겹침접합압연 (Accumulative Roll-Bonding of Al Powder Compact Fabricated by a Powder-in Sheath Rolling Method)

  • 이성희
    • 한국분말재료학회지
    • /
    • 제12권1호
    • /
    • pp.30-35
    • /
    • 2005
  • An aluminum powder compact consolidated by a powder-in sheath rolling (PSR) method was severely deformed by accumulative roll-bonding (ARB) process. The ARB process was performed up to 8 cycles at ambient temperature without lubrication. Optical microscope and transmission electron microscope observations revealed that microstructure of the ARB-processed Al powder compact is inhomogeneous in the thickness direction. The ultra-fine subgrains often reported in the ARB-processed bulky materials were also developed near surface of the Al powder compacts in this study. Tensile strength of the ARB-processed Al powder compact increased at the 1st cycle, but from the 2nd cycle it rather decreased slightly.

백화현상에 따른 ACSR 송선선로의 인장강도 특성 분석 (Analysis of Tensile Strength Characteristics of ACSR due to White Rust)

  • 박대근;안정환;곽민준;정미희;최철
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제8권1호
    • /
    • pp.1-4
    • /
    • 2022
  • In this study, a tensile test, one of the mechanical tests, was performed with the collected natural aging ACSR. In order to be used as basic data for predicting the replacement cycle of ACSR, the tensile strength with the normal cables was compared for cables which was caused white rust due to exposure of the hard-drawn aluminum wire surface. Among the ACSR wires collected from various regions, white rust was found on the surface of the small wire, and by checking the tensile strength of them, we would like to suggest the criteria for the ACSR replacement cycle, focusing on changes in mechanical properties.