• Title/Summary/Keyword: Cycle free algorithm

Search Result 19, Processing Time 0.009 seconds

Development of a Cycle-free Based, Cooridinated Dynamic Signal Timing Model for Minimizing Delay (Using Genetic Algorithm) (지체도 최소화를 위한 주기변동기반 동적신호시간 결정모헝 개발)

  • 이영인;최완석;임재승
    • Journal of Korean Society of Transportation
    • /
    • v.19 no.1
    • /
    • pp.115-129
    • /
    • 2001
  • The purpose of this study is to develop a cycle-free signal timing model for minimizing delays based on Third-generation control concept using Genetic Algorithm. A special feature of this model is its ability to manage delays of turning movements on the cycle basis. The model produces a cycle-free based signal timing(cycles and green times) for each intersection to minimize delays of turning movements on the cycle basis. The performance of cycle-free signal timings was evaluated on normal (v/c = 0.7) and oversaturated (v/c=1.0) conditions. The performance measures are throughput and the number of queued vehicles at the end of green time. The result shows that the cycle free signal timing is superior to the fixed signal timing to manage traffic flows of intersections; (1) the proposed model accomplishes the basic objective of the research, producing cycle free signal timings on the cycle basis, (2) on normal conditions, cycle free signal timings produce less queued vehicles at the end of green time, and (3) on oversaturated conditions, the cycle free signal timing is superior to the fixed signal timing to manage saturated traffic flows of intersections.

  • PDF

A New Digital Distance Relaying Algorithm Based on Fast Haar Transformation Techniques with Half a Cycle Offset Free Data (Offset이 제거된 반주기 테이터를 사용하는 고속Haar 변환에 기초한 디지털 거리계전 알고리)

  • 강상희;박종근
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.41 no.9
    • /
    • pp.973-983
    • /
    • 1992
  • A very fast algorithm, using fast Haar transformation with half a cycle dc-offset free data, to extract the power frequency components and to detect faults in power systems is proposed. For the speed-up, two important techniques are used. First, according to the symmetric characteristics of sine and cosine functions, fundamental frequency components are calculated with only half a cycle sample data. For using these characteristics, post-fault de-offset components must be removed beforehand. Therefore, secondly, a newly designed digital filter is used to remove exponentially decaying dc-offset from the post-fault signal. In accordance with series simulations, transmission line faults can be detected in around half a cycle after faults.

Development of a Bi-objective Cycle-free Signal Timing Model Using Genetic Algorithm (유전자 알고리즘을 이용한 이중목적 주기변동 신호시간 결정 모형 개발)

  • 최완석;이영인
    • Journal of Korean Society of Transportation
    • /
    • v.20 no.5
    • /
    • pp.81-98
    • /
    • 2002
  • This paper documents the development of a bi-objective(minimizing delays and Queue lengths) cycle-free signal timing length model using Genetic Algorithm. The model was embodied using MATLAB. the language of technical computing. A special feature of this model is its ability to concurrently manage delays and queue lengths of turning movement concurrently. The model produces a cycle-free signal timing(cycles and green times) for each intersection on the cycle basis. Appropriate offsets could be also accomplished by applying cycle-free based signal timings for respective intersections. The model was applied to an example network which consists of four intersections. The result shows that the model produces superior signal timings to the existing signal timing model in terms of managing delays and queue lengths of turning movements.

Carrier Phase Based Cycle Slip Detection and Identification Algorithm for the Integrity Monitoring of Reference Stations

  • Su-Kyung Kim;Sung Chun Bu;Chulsoo Lee;Beomsoo Kim;Donguk Kim
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.12 no.4
    • /
    • pp.359-367
    • /
    • 2023
  • In order to ensure the high-integrity of reference stations of satellite navigation system, cycle slip should be precisely monitored and compensated. In this paper, we proposed a cycle slip algorithm for the integrity monitoring of the reference stations. Unlike the legacy method using the Melbourne-Wübbena (MW) combination and ionosphere combination, the proposed algorithm is based on ionosphere combination only, which uses high precision carrier phase observations without pseudorange observations. Two independent and complementary ionosphere combinations, Ionospheric Negative (IN) and Ionospheric Positive (IP), were adopted to avoid insensitive cycle slip pairs. In addition, a second-order time difference was applied to the IN and IP combinations to minimize the influence of ionospheric and tropospheric delay even under severe atmosphere conditions. Then, the cycle slip was detected by the thresholds determined based on error propagation rules, and the cycle slip was identified through weighted least square method. The performance of the proposed cycle slip algorithm was validated with the 1 Hz dual-frequency carrier phase data collected under the difference levels of ionospheric activities. For this experiment, 15 insensitive cycle slip pairs were intentionally inserted into the raw carrier phase observations, which is difficult to be detected with the traditional cycle slip approach. The results indicate that the proposed approach can successfully detect and compensate all of the inserted cycle slip pairs regardless of ionospheric activity. As a consequence, the proposed cycle slip algorithm is confirmed to be suitable for the reference station where real time high-integrity monitoring is crucial.

Development of a Cycle-free Based, Coordinated Dynamic Signal Timing Model for Minimizing Queue-Lengths (Using Genetic Algorithm) (대기차량 최소화를 위한 주기변동기반 (Cycle-free based) 동적 신호시간 결정모형 개발)

  • 이영인;임재승;윤경섭
    • Journal of Korean Society of Transportation
    • /
    • v.18 no.2
    • /
    • pp.73-89
    • /
    • 2000
  • This Paper documents the development of a cycle free based, coordinated dynamic signal timing model for minimizing queue lengths using Genetic A1gorithm. The model was embodied using MAT-LAB, the language of technical computing. A special feature of this model is its ability to manage queue lengths of turning movements at the start of green times. The model produces a cycle-free based signal timing(cycles and green times) for each intersection to minimize queue lengths of turning movements on the cycle basis. Concurrently, appropriate offsets could be accomplished by applying cycle-free based signal timings for respective intersections. The model was applied to an example network which consists of three intersections. The result shows that the model produces superior signal timings to the existing signal timing model in terms of managing queue lengths of turning movements.

  • PDF

The Study of Control Algorithm for Stand alone PV System (독립헝 태양광 발전 시스템의 제어 알고리즘에 관한 연구)

  • Kim, Tae-Yeop;Jung, Maeng-Hwa;Goh, Gweon-Seong
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.1382-1384
    • /
    • 2002
  • The flooded type battery is used for solar lighting system. Because the characteristic of flooded type battery is the short life time, the maintenance cost is high. So the using flooded type battery in this system is inappropriate. The valve regulated lead acid batter.(VRLA) is the maintenance free and cycle service purpose. This paper presents the development of control system and monitoring system to applied VRLA battery for maintenance free and long life time in system.

  • PDF

New Z-Cycle Detection Algorithm Using Communication Pattern Transformation for the Minimum Number of Forced Checkpoints (통신 유형 변형을 이용하여 검사점 생성 개수를 개선한 검사점 Z-Cycle 검출 기법)

  • Woo Namyoon;Yeom Heon Young;Park Taesoon
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.31 no.12
    • /
    • pp.692-703
    • /
    • 2004
  • Communication induced checkpointing (CIC) is one of the checkpointing techniques to provide fault tolerance for distributed systems. Independent checkpoints that each distributed process produces without coordination are likely to be useless. Useless checkpoints, which cannot belong to any consistent global checkpoint sets, induce nondeterminant rollback. To prevent the useless checkpoints, CIC forces processes to take additional checkpoints at proper moment. The number of those forced checkpoints is the main source of failure-free overhead in CIC. In this paper, we present two new CIC protocols which satisfy 'No Z-Cycle (NZC)'property. The proposed protocols reduce the number of forced checkpoints compared to the existing protocols with the drawback of the increase in message delay. Our simulation results with the synthetic data show that the proposed protocols have lower failure-free overhead than the existing protocols. Additionally, we show that the classical 'index-based checkpointing' protocols are inefficient in constructing the consistent global cut in distributed executions.

Training HMM Structure and Parameters with Genetic Algorithm and Harmony Search Algorithm

  • Ko, Kwang-Eun;Park, Seung-Min;Park, Jun-Heong;Sim, Kwee-Bo
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.1
    • /
    • pp.109-114
    • /
    • 2012
  • In this paper, we utilize training strategy of hidden Markov model (HMM) to use in versatile issues such as classification of time-series sequential data such as electric transient disturbance problem in power system. For this, an automatic means of optimizing HMMs would be highly desirable, but it raises important issues: model interpretation and complexity control. With this in mind, we explore the possibility of using genetic algorithm (GA) and harmony search (HS) algorithm for optimizing the HMM. GA is flexible to allow incorporating other methods, such as Baum-Welch, within their cycle. Furthermore, operators that alter the structure of HMMs can be designed to simple structures. HS algorithm with parameter-setting free technique is proper for optimizing the parameters of HMM. HS algorithm is flexible so as to allow the elimination of requiring tedious parameter assigning efforts. In this paper, a sequential data analysis simulation is illustrated, and the optimized-HMMs are evaluated. The optimized HMM was capable of classifying a sequential data set for testing compared with the normal HMM.

Finite Element Simulation of a Superplastic Sheet Metal Forming Process with a Pressure Cycle Control Algorithm (초소성 박판 성형 공정의 유한 요소 압력 제어 해석)

  • 한수식;양동열;이종수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.5
    • /
    • pp.1563-1571
    • /
    • 1991
  • 본 연구에서는 가상일 원리로 부터 유한 요소 수식화를 updated-Lagrangian 형태로 유도하였으며, 유도된 수식화를 연속체 유한 요소로 유한 근사화 하였다. 이 때 초소성 재료의 거동은 비압축성, 비선형 점성 유ㄷ옹으로 묘사하였다. 유한 요소 프로그램은 성형 기구 해석과 하중 압력을 제어하는 기법으로 구성되어 있으며 하중 압력의 제어는 성형 시간이 최소가 되게 하기 위하여 변형률 속도 민감 계수가 최대가 되고, 국부 변형에 의한 두께 감소를 방지하며 변형률 속도는 일정하게 유지되면서 성 형이 될 수 있도록 하였다. 즉 하중 압력 제어는 상당 변형률 속도가 최대가 되게하 여 성형 시간을 최소화하게 구성하였다.개발된 유한 요소 프로그램은 정수압 벌징 가공에 적용하였으며 최적 압력 시간 선도, 성형 형상, 두께 및 두께 변형률 분포, 상 당 변형률 분포 등을 구하였다.