• Title/Summary/Keyword: Cycle by cycle variation

Search Result 552, Processing Time 0.028 seconds

The Performance Analysis of Multi Stage Reheater Organic Rankine Cycle According to Heat Sink Temperature Change (냉열원 온도 변화에 따른 다단재열랭킨사이클의 성능해석)

  • Lee, Ho-Saeng;Lim, Seung-Taek;Kim, Hyeon-Ju
    • Journal of Power System Engineering
    • /
    • v.20 no.1
    • /
    • pp.11-17
    • /
    • 2016
  • In this study, the simulation for performance comparison between basic single stage organic rankine cycle, multi stage reheater cycle and multi stage reheater & recuperator cycle was carried out. The multi stage reheater cycle and multi stage reheater & recuperator cycle was designed to improve the efficiency for organic rankine cycle using heat source from industrial waste heat and heat sink from deep ocean water. R245fa was selected as a refrigerant for the cycle and system efficiencies were simulated by the variation of the heat sink temperature and the cycle classification. Performance characteristics were simulated by using the Aspen HYSYS. It was confirmed that the system efficiency was decreased by the increase of heat sink temperature. These results can be considered to be applied as geo-ocean thermal energy conversion in where plenty of geothermal or ocean thermal resource exist.

A Study on the Optimal Equipment Selection of Series Systems using Life Cycle Cost and Failure Cost (Failure Cost와 Life Cycle Cost를 고려한 연속시스템에 대한 최적 장치 선택에 관한 연구)

  • Jin Sang-Hwa;Kim Yong-Ha;Song Hee-Oeul;Yeo Yeong-Koo;Kim In-Won
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.4 s.68
    • /
    • pp.55-59
    • /
    • 2004
  • In this study, the required life cycle cost is evaluated in consideration of the equipment's availability during its lift cycle. In order to meet the maximum availability required by the process, the failure cost and life cycle cost is assessed The optimal equipment selection method is presented according to the analysis of the failure cost and life cycle cost. For the systems in which equipments are connected serially, the optimal equipments are selected by minimizing the life cycle cost and satisfying the required system availability goal. In addition, the selection methods and lift cycle cost are analyzed according to the cost variation of the equipment. By using the life cycle evaluation procedure, the failure cost and maintenance cost needed during the life cycle of the equipment can be presented.

Studies on the cell cycle of saccharomyces cerevisiae by electron spin resonance spectroscopy (전자스핀공명스펙트럼에 의한 saccharomyces cerevisiae의 세포환 연구)

  • 임형순;강사욱
    • Korean Journal of Microbiology
    • /
    • v.26 no.1
    • /
    • pp.44-51
    • /
    • 1988
  • The intracellular free radicals produced at different stages of cell cycle of Saccharomyces cerevisiae ATCC 24858 were investigated by means of electron spin resonance(ESR) spectroscopy. The synchronized cells by repeated starvation and refeeding revealed different ESR spectral pattern compared to that of asynchronized cells. Each spectrum centered at g=2.005, which indicates free radicals. The relative spin concentration was maximat at the end of DNA increase. The variation of the relative spin concentration at each distinct stage of the cell cycle was evaluated in relation to ascorbate concentration, L-galactonolactone oxidase activity, and ascorbate oxidase activity. The highest activities of L-galactonolactone oxidase and ascorbate oxidase were detected just before and at the maximum of relative spin concentration, respectively. And ascorbate concentration fluctuated through each stage of cell cycle with the changes of relative spin concentration, L-galactonolactone oxidase activity, and ascorbate oxidase activity. Thus it is suggested that intracellular free radicals should be related to cell cycle, interacted with ascorbate, and may play an important role in the cell cycle of Saccharomyces cerevisiae.

  • PDF

A Study on the Adaptive Control of Spark Timing Using Cylinder Pressure in SI Engine (전기점화기관에서 실린더압력을 이용한 점화시기 적응제어에 관한 연구)

  • 조한승;이종화;유재석
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.3
    • /
    • pp.122-129
    • /
    • 1996
  • The spark timing is one of major parameters to the engine performance and emissions. The ECU controls the spark timing based on preset values, which are functions of load and speed, in most of today's automotive SI engine. In this system, the preset spark timing can be different from optimum value due to the deviations from mass production, aging effects and so on. In the present study, a control logic is investigated for real time adaptation of spark timing to optimal value. It has been found that crank angle of miximum cylinder pressure is one of the appropriate parameters to estimate the optimum spark timing throught experiment. It has also been observed for spark timing convergence by variation of engineering model factors. The simulation program including engineering model for cycle by cycle variation of combustion is developed for surveying spark timing control logic. It is also shown that simulation results reflect experiment outputs and reasonableness of spark timing control logic for crank angle of maximum cylinder pressure.

  • PDF

A Study on Characteristics of the SI Engine Using Methanol Reformulated Fuels (메탄올 개질연료를 사용한 가솔린 기관 실험 연구)

  • Lee, Suk-Young;Jeon, Chung-Hwan
    • Journal of Energy Engineering
    • /
    • v.19 no.1
    • /
    • pp.25-31
    • /
    • 2010
  • In this experimental research, it was studied to compare with pure gasoline and the fuels of RM50 (reformulated methanol fuel) for performance and exhaust emissions without reconstruction of engine systems. RM50 has a wider range of combustion limitation, which is one of the methanol's characteristics. This causes a stable driving state of RM50 in the experimental condition of unstable state and a low cycle by cycle variation which is used to determine the driving state. It is determined that fuel stability is better because cycle by cycle variation varies within 10%, therefore, driving characteristics is relatively good. In all conditions, RM50 has lower exhaust emissions of CO, HC, NOx than gasoline fuel, however, RM50's noise characteristics are 0.5~2dB higher at all condition, and in the result of the experiments of rubber fusion, it increases the utility possibility of RM50.

Performance Variation of a Combined Cycle Power Plant by Coolant Pre-cooling and Fuel Pre-heating (냉각공기 예냉각과 연료예열에 의한 복합발전 시스템의 성능변화)

  • Kwon, Ik-Hwan;Kang, Do-Won;Kim, Tong-Seop;Kim, Jae-Hwan
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.3
    • /
    • pp.57-63
    • /
    • 2012
  • Effects of coolant pre-cooling and fuel pre-heating on the performance of a combined cycle using a F-class gas turbine were investigated. Coolant pre-cooling results in an increase of power output but a decrease in efficiency. Performance variation due to the fuel pre-heating depends on the location of the heat source for the pre-heating in the bottoming cycle (heat recovery steam generator). It was demonstrated that a careful selection of the heat source location would enhance efficiency with a minimal power penalty. The effect of combining the coolant pre-cooling and fuel pre-heating was also investigated. It was found that a favorable combination would yield power augmentation, while efficiency remains close to the reference value.

Variation of the Hemispheric Asymmetry of the Equatorial Ionization Anomaly with Solar Cycle

  • Kwak, Young-Sil;Kil, Hyosub;Lee, Woo Kyoung;Yang, Tae-Yong
    • Journal of Astronomy and Space Sciences
    • /
    • v.36 no.3
    • /
    • pp.159-168
    • /
    • 2019
  • In solstices during the solar minimum, the hemispheric difference of the equatorial ionization anomaly (EIA) intensity (hereafter hemispheric asymmetry) is understood as being opposite in the morning and afternoon. This phenomenon is explained by the temporal variation of the combined effects of the fountain process and interhemispheric wind. However, the mechanism applied to the observations during the solar minimum has not yet been validated with observations made during other periods of the solar cycle. We investigate the variability of the hemispheric asymmetry with local time (LT), altitude, season, and solar cycle using the electron density taken by the CHAllenging Minisatellite Payload satellite and the global total electron content (TEC) maps acquired during 2001-2008. The electron density profiles provided by the Constellation Observing System for Meteorology, Ionosphere, and Climate satellites during 2007-2008 are also used to investigate the variation of the hemispheric asymmetry with altitude during the solar minimum. During the solar minimum, the location of a stronger EIA moves from the winter hemisphere to the summer hemisphere around 1200-1400 LT. The reversal of the hemispheric asymmetry is more clearly visible in the F-peak density than in TEC or in topside plasma density. During the solar maximum, the EIA in the winter hemisphere is stronger than that in the summer hemisphere in both the morning and afternoon. When the location of a stronger EIA in the afternoon is viewed as a function of the year, the transition from the winter hemisphere to the summer hemisphere occurs near 2004 (yearly average F10.7 index = 106). We discuss the mechanisms that cause the variation of the hemispheric asymmetry with LT and solar cycle.

Water quality management of Jeiu Harbor using material cycle model(I) - The Variation of Physical Oceanographic Environments in Jeiu Harbor - (물질순환모델을 이용한 제주항의 수질관리(I) - 제주항의 물리해양환경의 변화 -)

  • 조은일;이병걸;오윤근
    • Journal of Environmental Science International
    • /
    • v.11 no.1
    • /
    • pp.25-32
    • /
    • 2002
  • In order to control of water quality in Jeju harbor, variation of physical oceanographic environments was estimated using material cycle model. It is composed of the three-dimensional hydrodynamic model for the simulation at water flow and material cycle model for the simulation of water quality. The three dimensional hydrodynamic model simulation of the circulation and mixing in Jeju Harbor has been conducted forced by Sanzi River Discharge, Tidal elevation, wind and Solar heat in case of August and November, 2000 and February and May, 2001, respectively. The results of numerical model and observation show that the model can produce realistic results of current in the harbor. The monthly variation of velocity pattern are not so much changed are found In Jeju Harbor. The residual current was forced by temperature, salinity, density, wind and tidal current. The residual current of August, 2000 are the strongest among four month. It can be explained that the density effect can be important role in residual current at Jeju Harbor. As the results of salinity distribution simulation, very low concentration of all levels were simulated in August, 2000. The flowrate of Sanzi river was investigated 77,760 ㎥ /d in August, 2000. Therefore, pollutant loadings from Sanzi river should be considered for water quality management in Jeiu harbor.

Compression Power and Exergy Analysis in a Dry Ice Production Cycle with 3-stage Compression (3단압축 드라이아이스 제조사이클의 압축동력과 엑서지 해석)

  • 이근식
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.6
    • /
    • pp.550-560
    • /
    • 2000
  • In order to minimize compression power and analyze the cause of exergy loss for a dry ice production cycle with 3-stage compression, the variation of compression power was investigated and the exergy analysis was peformed for the cycle. In this cycle, $CO_2$, is used both as a refrigerant and as a raw material for dry ice. The behavior of compression power and irreversibility in the cycle were examined as a function of intermediate pressure. From this result, the conditions for the minimum compression power were obtained in terms of the first stage or the third stage pressure. In addition, the irreversibilities for the cycle were investigated with respect to the efficiency of compressor. Result shows that the optimum pressure is not consistent with the conventional pressure obtained from the equal-pressure-ratio assumption. This is mainly due to the change in mass flow rate of the intermediate stage compressor by the flash gas evaporation from the flash drums. Most important is that the present exergy analysis enabled us to find bad performance components for the cycle and informed us of methods to improve the cycle performance.

  • PDF

A Study on Cyclic Variation by Idling in Gasoline Vehicle (가솔린자동차의 무부하 운전에서 사이클변동에 관한 연구)

  • Han, Sung-Bin;Kim, Sung-Mo
    • Journal of Energy Engineering
    • /
    • v.18 no.3
    • /
    • pp.156-162
    • /
    • 2009
  • Cylinder-pressure based combustion analysis provides a mechanism through which a combustion researcher can understand the combustion process. This paper was to identify the most significant sources of cycle-to-cycle combustion variability in a spark ignition engine at idle. To analyse the cyclic variation in the test engine, the burn parameters are determined on a cycle-to-cycle basis through analysis of the engine pressure data. The burn rate analysis program was used in the analysis of the data. Burn parameters were used to determine the variations in the input parameter-i.e., fuel, air, residual mass, and so on.