• 제목/요약/키워드: Cycle Efficiency

검색결과 1,935건 처리시간 0.029초

태양열 발전용 스크롤 방식 스털링 엔진의 특성 (Characteristics of Scroll-type Stirling Engine for Solar Power)

  • 김영민;신동길;김우영;김현진;이상태
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2008년도 춘계학술대회 논문집
    • /
    • pp.169-173
    • /
    • 2008
  • Stirling engine is a promising heat engine with a high efficiency, muti-fuel capability, low emission, quiet operation, very low maintenance and long life. As one of the promising applications, solar power system based on the Stirling dish, providing net solar-to-electric conversion efficiencies reaching 30%, can operate as stand-alone units in remote locations or can be linked together in groups to provide utility-scale power. This paper introduced a new Scroll-type Stirling engine, being developed for solar power, superior to conventional Stirling engines. The Scroll-type Stirling engine is characterized as traits of continuous and wholly separated compression and expansion; one-way flow system; direct cooling and heating the fluid in the working spaces through the extensive inner surfaces of scroll wraps. All theses traits contribute to achieving thermodynamic cycle closer to the ideal Stirling cycle (exactly speaking, Ericsson cycle).

  • PDF

가스발생기 사이클 액체로켓엔진의 시스템 설계 인자 비교 (Comparison Study on System Design Parameters of Gas Generator Cycle Liquid Rocket Engine)

  • 남창호;박순영;문윤완
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2005년도 제25회 추계학술대회논문집
    • /
    • pp.220-223
    • /
    • 2005
  • 본 연구에서는 러시아, 미국, 유럽, 일본의 가스발생기 사이클 엔진 시스템 설계인자를 조사하여 비교 검토하였다. 연소기의 특성속도, 연소기 분사기 차압, 터보펌프 토출압, 펌프효율, 터빈의 비출력 등의 설계인자를 비교한 결과 연소기의 특성속도는 1700-1770 m/s, 분사기차압은 4-10bar, 터보 펌프 토출압은 연소기 압력의 120-230%, 펌프효율은 60-80%, 터빈의 비출력은 $0.28-0.58MW{\cdot}s/kg$의 범위에 있다. 터빈 입구의 가스온도는 터빈의 비출력과 밀접한 관련이 있으며 터빈재질로 인한 한계를 고려하여 결정되어야 한다.

  • PDF

녹색기업의 사업활동 전 과정에 대한 환경성 평가 -1. 공정 흐름 및 원단위 분석 (Life Cycle Assessment for the Business Activities of Green Company -1. Analysis of Process Flow and Basic Unit)

  • 신춘환;박도현
    • 한국환경과학회지
    • /
    • 제22권3호
    • /
    • pp.269-279
    • /
    • 2013
  • In this paper, an environmental assessment was carried out on the whole process of industrial business activities to establish a basic plan for climate change mitigation and energy independency. The whole process was divided into each discharge process in terms of water, air, solid waste, green house gases and refractory organic compounds. The flowcharts and basic unit of process were analysed for three years (2008-2010), being utilized as basic information for the life cycle assessment. It was found that the unit loading for the whole process significantly depends on changes in the operation rate change and highly concentrated wastewater inflow. About 35% of solid waste production was reduced by improving the incineration method with co-combustion in coal boiler, generating about 57% of electricity used for the whole process, and consequently reducing the energy costs. As the eco-efficiency index was found to be more than 1, compared to the previous years, it can be said that improvement in general has taken place.

밀러사이클 적용 스파크점화기관의 후기 흡기밸브 닫힘각 변화에 따른 연소성능 연구 (A Study on Combustion Characteristics of Spark-Ignited Engine with Different Late Intake Valve Closing for Miller Cycle)

  • 정진호;강선제;김진수;정석철;이진욱
    • 한국분무공학회지
    • /
    • 제20권3호
    • /
    • pp.141-148
    • /
    • 2015
  • In order to research engine characteristics of spark-ignited engine with intake valve closing timing change for Miller cycle, two cam for LIVC(Late Intake Valve Closing) were designed and fabricated an prototype valvetrain. And intake valve closing timing were adjusted to build low compressing and high expansion cycle for HEV. In experimental study, it were investigated with different engine speed, spark timing and air-fuel ratio to compare base cam and LIVC cam type. It was found that the volumetry efficiency and effective work of compression process were decreased in case of LIVC cam. When compared with the existing results, the maximum pressure in the cylinder was reduced about 12~13 bar and the volumetric efficiency was reduced about 16%.

교통 특성에 따른 유리섬유 시트 보강 아스팔트포장의 경제성 분석 (Economic Analysis Considering Traffic Characteristics for the Glass Fiber Sheet Reinforced Asphalt Pavement)

  • 조삼덕;이대영;한상기;김남호
    • 한국지반신소재학회논문집
    • /
    • 제1권1호
    • /
    • pp.53-61
    • /
    • 2002
  • 최근 들어 토목섬유를 이용한 아스팔트 포장에 관한 많은 실내실험 및 현장 시험 시공연구가 수행되어 왔으나, 아직까지도 토목섬유 보강 아스팔트 포장 시스템의 경제성에 대한 합리적이고 체계적인 분석이 제시되지 못하고 있는 실정이다. 따라서 본 연구에서는 최근 경제성 분석기법으로 활용되고 있는 수명주기비용분석(LCCA; Life Cycle Cost Analysis)을 적용하여 유리섬유 시트 보강 아스팔트 포장에 대한 중차량 비율을 고려한 교통 특성에 따른 경제성 분석을 시도하였으며, 이를 통하여 기존 문헌에서 제시된 실험 결과를 경제성 분석 모텔에 적용하여 유리섬유 시트 보강 및 교통 특성에 따른 경제성을 검토하였다.

  • PDF

유기랭킨사이클을 이용한 직렬 열병합 사이클의 성능 특성 (Performance Characteristics of Combined Heat and Power Generation with Series Circuit Using Organic Rankine Cycle)

  • 김경훈;정영관
    • 한국수소및신에너지학회논문집
    • /
    • 제22권5호
    • /
    • pp.699-705
    • /
    • 2011
  • A combined heat and power cogeneration system driven by low-temperature sources is investigated by the first and second laws of thermodynamics. The system consists of Organic Rankine Cycle (ORC) and an additional process heater as a series circuit. Seven working fluids of R152a, propane, isobutane, butane, R11, R123, isopentane and n-pentane are considered in this work. Maximum mass flow rate of a working fluid relative to that of the source fluid is considered to extract maximum power from the source. Results indicate that the second-law efficiency can be significantly increased due to the combined heat and power generation. Furthermore, higher source temperature and lower turbine inlet pressure lead to lower second-law efficiency of ORC system but higher that of combined system. Results also show that the optimum working fluid varies with the source temperature.

Experimental exergy assessment of ground source heat pump system

  • Ahmad, Saif Nawaz;Prakasha, Om
    • Advances in Energy Research
    • /
    • 제6권2호
    • /
    • pp.161-172
    • /
    • 2019
  • The principal intention of this experimental work is to confer upon the exergy study of GSHP associated with horizontal earth heat exchanger for space heating. The exergy analysis recognizes the assessment of the tendency of various energy flows and quantifies the extensive impression of inefficiencies in the system and its components. Consequently, this study intends to provide the enlightenment for well interpretation of exergy concept for GSHP. This GSHP system is composed of heat pump cycle, earth heat exchanger cycle and fan coil cycle. All the required data were measured and recorded when the experimental set up run at steady state and average of the measured data were used for exergy investigation purpose. In this study the rate at which exergy destructed at all the subsystems and system has been estimated using the analytical expression. The overall rational exergetic efficiency of the GSHP system was evaluated for estimating its effectiveness. Hence, we draw the exergy flow diagram by using the various calculated results. The result shows that in the whole system the maximum exergy destruction rate component was compressor and minimum exergy flow component was earth heat exchanger. Consequently, compressor and earth heat exchanger need to be pay more attention.

엔진 배기열 회수 증발기 설계를 위한 유기랭킨사이클 분석 (Analysis of organic rankine cycle for designing evaporator of engine exhaust heat recovery system)

  • 고제현;최병철;박권하
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제37권5호
    • /
    • pp.446-452
    • /
    • 2013
  • 탄소저감 기술과 함께 에너지 효율 향상에 대한 관심이 증가하고 있다. 엔진에서 대기로 방출되는 배기에너지는 전체에너지의 30%가 넘는 많은 양이며 배기열을 회수하기 위한 많은 연구가 진행되고 있다. 본 연구에서는 선행연구를 통하여 제시한 디젤엔진에서의 최적 열 회수 조건에 대한 랭킨사이클을 분석하였다. 그 결과 질량유량비와 압력비가 각각 0.6, 0.7 일 때 엑서지 효율과 출력은 0.53, 1.43 kW을 나타내었다.

열펌프 건조 해석 모델을 이용한 측정 결과의 분석 (Investigation of Experimental Results Using the Drying Model for a Heat Pump Dryer)

  • 이공훈;김욱중;김종률;이상열
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.2268-2273
    • /
    • 2008
  • The drying model has been used to obtain the fundamental information required to design the heat pump dryer with the simple thermodynamic model. In the model, the input conditions are crucial to obtain the acceptable results. The model includes one-stage heat pump cycle, simple drying process using the drying efficiency. The drying efficiency is defined with the conditions of inlet and outlet in the dryer. The experiment has been carried out in the pilot dryer with one-stage heat pump cycle. Refrigerant 134a is used in the heat pump cycle. In the dryer, some of drying air flows through the heat pump system and the rest of air bypasses the heat pump system and circulates through the drying chamber. Some operating conditions from the pilot dryer are used as input conditions of the model and the results are compared with experimental results for the validation.

  • PDF

유기랭킨사이클을 이용한 병렬 열병합 발전시스템의 열역학적 이론 성능 특성 (Theoretical Characteristics of Thermodynamic Performance of Combined Heat and Power Generation with Parallel Circuit using Organic Rankine Cycle)

  • 김경훈
    • 한국태양에너지학회 논문집
    • /
    • 제31권6호
    • /
    • pp.49-56
    • /
    • 2011
  • In this study a novel cogeneration system driven by low-temperature sources at a temperature level below $190^{\circ}C$ is investigated by first and second laws of thermodynamics. The system consists of Organic Rankine Cycle(ORC) and an additional heat generation as a parallel circuit. Seven working fluids of R143a, R22, R134a, R152a, $iC_4H_{10}$(isobutane), $C_4H_{10}$(butane), and R123a are considered in this work. Maximum mass flow rate of a working fluid relative to that of the source fluid and optimum turbine inlet pressure are considered to extract maximum power from the source. Results show that due to a combined heat and power generation, both the efficiencies by first and second laws can be significantly increased in comparison to a power generation, however, the second law efficiency is more resonable in the investigation of cogeneration systems. Results also show that the working fluid for the maximum system efficiency depends on the source temperature.