• 제목/요약/키워드: Cycle Efficiency

검색결과 1,927건 처리시간 0.029초

습식 압축을 채용한 재생 가스터빈 사이클의 엑서지 해석 (Exergy Analysis of Regenerative Wet-Compression Gas-Turbine Cycles)

  • 김경훈;김세웅;고형종
    • 에너지공학
    • /
    • 제18권2호
    • /
    • pp.93-100
    • /
    • 2009
  • 습식압축으로 압축소요동력을 줄이고 재생기로 배기가스 에너지를 회수함으로써 열효율을 향상시킬 수 있는 습식압축 재생 브레이튼 사이클에 대하여 엑서지 해석을 수행하였다. 해석모델을 통하여 시스템의 엑서지 효율과 요소별 엑서지 파괴비 및 배기가스로 인한 엑서지 손실비에 미치는 압력비와 물분사율의 영향을 조사하였다. 전형적인 운전조건에 대한 계산 결과 습식압축 재생 가스터빈 사이클에 의하여 엑서지 효율을 상당히 향상시킬 수 있음을 확인하였다. 물 분사 효과는 배기가스의 엑서지 손실의 감소와 출력 동력의 증가로 나타난다.

Development and performance analysis of a Miller cycle in a modified using diesel engine

  • Choi, Gyeung-Ho;Poompipatpong, Chedthawut;Koetniyom, Saiprasit;Chung, Yon-Jong;Chang, Yong-Hoon;Han, Sung-Bin
    • 에너지공학
    • /
    • 제17권4호
    • /
    • pp.198-203
    • /
    • 2008
  • The objective of the research was to study the effects of Miller cycle in a modified using diesel engine. The engine was dedicated to natural gas usage by modifying pistons, fuel system and ignition systems. The engine was installed on a dynamometer and attached with various sensors and controllers. Intake valve timing, engine speed, load, injection timing and ignition timing are main parameters. The results of engine performances and emissions are present in form of graphs. Miller Cycle without supercharging can increase brake thermal efficiency and reduce brake specific fuel consumption. The injection timing must be synchronous with valve timing, speed and load to control the performances, emissions and knock margin. Throughout these tested speeds, original camshaft is recommended to obtain high volumetric efficiency. Retard ignition timing can reduce $NO_x$ emissions while maintaining high efficiency.

High-Reliability Three-Phase Dual-Buck Grid-Connected Inverter without Shoot-Through Problem

  • Fu, Zhenbin;Feng, Zhihua;Chen, Xi;Zheng, Xinxin
    • Journal of Power Electronics
    • /
    • 제19권2호
    • /
    • pp.454-462
    • /
    • 2019
  • When compared to traditional bridge-type inverters, the dual-buck inverter has a higher reliability due to the fact that its bridge legs do not have a shoot-through problem. In this paper, the working principle of the dual-buck inverter is analyzed. A comparison of the working modes under full-cycle and half-cycle control is discussed. With half-cycle control, the inverter can realize a higher efficiency. However, this results in current zero-crossing distortion. The corresponding control strategy of the dual-buck inverter is proposed in order to realize both high efficiency and low current harmonic distortion. In addition, the system stability is analyzed. Dead-time is unnecessary due to the advantages of the topology. Thus, the current harmonic distortion can be further reduced. An inverter with the proposed control strategy has the advantages of high reliability, high efficiency and low current harmonic distortion. Finally, simulation and experimental results are given to verify the theoretical analysis.

부분분사 축류형 터빈을 이용한 소규모 유기랭킨 사이클의 실험 및 예측에 관한 연구 (Cycle Analysis and Experiment for a Small-Scale Organic Rankine Cycle Using a Partially Admitted Axial Turbine)

  • 조수용;조종현
    • 한국유체기계학회 논문집
    • /
    • 제18권5호
    • /
    • pp.33-41
    • /
    • 2015
  • Organic Rankine cycle (ORC) has been used to generate electrical or mechanical power from low-grade thermal energy. Usually, this thermal energy is not supplied continuously at the constant thermal energy level. In order to optimally utilize fluctuating thermal energy, an axial-type turbine was applied to the expander of ORC and two supersonic nozzle were used to control the mass flow rate. Experiment was conducted with various turbine inlet temperatures (TIT) with the partial admission rate of 16.7 %. The tip diameter of rotor was to be 80 mm. In the cycle analysis, the output power of ORC was predicted with considering the load dissipating the output power produced from the ORC as well as the turbine efficiency. The predicted results showed the same trend as the experimental results, and the experimental results showed that the system efficiency of 2 % was obtained at the TIT of $100^{\circ}C$.

유기 랜킨 사이클을 이용한 선박 주기관 폐열회수 시스템의 적용성과 최적화 (Feasibility Study and Optimization of Organic Rankine Cycle to Recover Waste Heat of Marine Diesel Engine)

  • 이호기;이동길;박건일
    • 대한조선학회 특별논문집
    • /
    • 대한조선학회 2013년도 특별논문집
    • /
    • pp.103-109
    • /
    • 2013
  • The Present work focuses on application of Organic Rankine Cycle - Waste heat Recovery System (ORC-WHRS) for marine diesel engine. ORC and its combined cycle with the engine were simulated and its performance was estimated theoretically under the various engine operation conditions and cooling water conditions. The working fluid, R245fa, was selected for the consideration of the heat source temperature, system efficiency and safety issues. According to the thermodynamic analysis, ~13.1% of system efficiency of the cycle was performed and it is about 4% of the mechanical power output of the considering Marine Diesel Engine. Also, addition of evaporator and pre-heater were studied to maximize output power of Organic Rankine Cycle as a waste heat recovery system of the marine diesel engine.

  • PDF

팽창기를 적용한 이산화탄소 냉방시스템의 성능특성에 관한 해석적 연구 (Simulation Study on the Performance Characteristics of a $CO_2$ Cooling System with an Expander)

  • 조홍현;백창현;류창기;김용찬
    • 설비공학논문집
    • /
    • 제19권9호
    • /
    • pp.630-639
    • /
    • 2007
  • A $CO_2$ cycle shows large throttling loss during the expansion process. The application of an expander into the $CO_2$ cycle can reduce the throttling loss and then improve system performance. In this study, the performance of a transcritical $CO_2$ cycle with an expander was analytically investigated in order to improve the cooling performance of the system. The expander was applied to the single-stage and two-stage compression cycles. The performance was analyzed with the variations of compressor frequency, outdoor temperature, and expander efficiency. The single-stage and two-stage compression cycles with the expander showed COP improvement of 25% and 32%, respectively, over the single-stage cycle with an EEV.

LNG 냉열과 재생 유기 랭킨 사이클을 이용한 복합 사이클의 성능 특성 해석 (Performance Characteristics Analysis of Combined Cycle Using Regenerative Organic Rankine Cycle and LNG Cold Energy)

  • 김경훈;정영관;한철호
    • 한국수소및신에너지학회논문집
    • /
    • 제31권2호
    • /
    • pp.234-241
    • /
    • 2020
  • This paper presents a thermodynamic performance analysis of a combined cycle consisting of regenerative organic Rankine cycle (ORC) and liquefied natural gas (LNG) Rankine cycle to recover low-grade heat source and the cold energy of LNG. The mathematical models are developed and the system performances are analyzed in the aspect of thermodynamics. The effects of the turbine inlet pressure and the working fluid on the system performance such as the mass flow rates, heat transfers at heat exchangers, power productions at turbines, and thermal efficiency are systematically investigated. The results show that the thermodynamic performance of ORC such as net power production and thermal efficiency can be significantly improved by the regenerative ORC and the LNG cold energy.

마이크로 적층기술을 이용한 열교환기 생산모델 개발과 경제성 평가 (Development of Heat Exchanger Production Model Based on the Microlamination Technology and Estimation of its Economic Efficiency)

  • 유범상;김재희;박상민
    • 한국공작기계학회논문집
    • /
    • 제15권3호
    • /
    • pp.97-103
    • /
    • 2006
  • The development of a heat exchanger production model based on the microlamination technology and it's economic efficiency is addressed. A microchannel production model is proposed for the high-volume production. The microlamination system is made up of lamina patterning, laminae sorting and laminae bonding. A cost estimation model is developed based on the hewn cycle time and capital equipment costs. An economic efficiency analysis is performed to determine the cost drivers under the different market and product scenarios. The result of the economic efficiency analysis indicated that the device size and the production rate have a great effect on the overall manufacturing cost of microlamination devices. And it can be concluded that the microlamination should focus on bonding larger laminae and reducing both cycle time and warpage.

$CO_2$용 2단압축 1단팽창 냉동 사이클의 성능 분석 (Performance Analysis of a Carbon Dioxide(R744) Two-Stage Compression and One-Stage Expansion Refrigeration Cycle)

  • 노건상;손창효
    • 동력기계공학회지
    • /
    • 제13권6호
    • /
    • pp.70-75
    • /
    • 2009
  • In this paper, cycle performance analysis of R744($CO_2$) two-stage compression and one-stage expansion refrigeration system is presented to offer the basic design data for the operating parameters of the system. The operating parameters considered in this study include superheating degree, compressor efficiency, gas cooling pressure, mass flowrate ratio, outlet temperature of gas cooler and evaporating temperature in the carbon dioxide two-stage refrigeration cycle. The main results were summarized as follows : The cooling capacity of two-stage compression and one-stage expansion refrigeration system increases with the increasing superheating degree, compressor efficiency and gas cooling pressure, but decreases with the increasing mass flowrate ratio and evaporating temperature. The compression work of two-stage compression and one-stage expansion refrigeration system increases with the increasing superheating degree, outlet temperature of gas cooler, gas cooling pressure and evaporating temperature, but decreases with the increasing compressor efficiency and mass flowrate ratio. The COP of two-stage compression and one-stage expansion refrigeration system increases with the increasing compressor efficiency, but decreases with the increasing superheating degree, gas cooling pressure, mass flowrate ratio and evaporating temperature. Therefore, superheating degree, compressor efficiency, gas cooling pressure, mass flowrate ratio, outlet temperature of gas cooler and evaporating temperature of R744($CO_2$) two-stage compression and one-stage expansion refrigeration system have an effect on the cooling capacity, compressor work and COP of this system.

  • PDF

장-행정 저속 4 사이클 디젤기관의 제작 및 최적 연소조건에 관한 연구 (A Study on Optimal Combustion Conditions with a Design and Manufacture of the Long-Stroke Slow Speed 4 Cycle Diesel Engine)

  • 장태익
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제28권3호
    • /
    • pp.551-558
    • /
    • 2004
  • Recently, fuel prices have been continually raised in diesel engine. Such a change in the fuel price influences enormously the development trend of marine diesel engines for slow speed, In other words, the focus was shifted from large diameter and high speed to low fuel consumption. Accordingly, more efforts are being made for engine manufacturing and development to develop highly efficient engines. In this study. a single cylinder 4 stroke cycle DI slow speed diesel engine was designed and manufactured, a 4 stroke cycle was configured and basic performances were evaluated. The results are as follows. The optimal fuel injection timing had the lowest value when specific fuel consumption was in BTDC 8~$10^{\circ}$, a little more delayed compared to high speed diesel engines. Cycle variation of engines showed about 5% difference at full loads. This is a significantly small value compared to the cycle variation in which stable operation is possible, showing the high stability of engine operation is good. The torque and brake thermal efficiency of engine increased with an increase of engine 250-450 rpm. but fuel consumption ratio increased from the 450 rpm zone and thermal efficiency abruptly decreased. Mechanical efficiency was maximally 70% at a 400 rpm that was lower than normal engines according to the increase of mechanical frictional loss for cross head part. The purpose of this study was to get more practical engines by comparing the above results with those of slow speed 2 stroke cycle diesel engines.