• Title/Summary/Keyword: Cycle Counting

Search Result 102, Processing Time 0.016 seconds

Cooling Time Determination of Spent Nuclear Fuel by Detection of Activity Ratio $^{l44}Ce /^{l37}Cs$ (방사능비 $^{l44}Ce /^{l37}Cs$ 검출에 의한 사용후핵연료 냉각기간 결정)

  • Lee, Young-Gil;Eom, Sung-Ho;Ro, Seung-Gy
    • Nuclear Engineering and Technology
    • /
    • v.25 no.2
    • /
    • pp.237-247
    • /
    • 1993
  • Activity ratio of two radioactive primary fission products which had sufficiently different half-lives was expressed as functions of cooling time and irradiation histories in which average burnup, irradiation time, cycle interval time and the dominant fissile material of the spent fuel were included. The gamma-ray spectra of 36 samples from 6 spent PWR fuel assemblies irradiated in Kori unit-1 reactor were obtained by a spectrometric system equipped with a high purity germanium gamma-ray detector. Activity ratio $^{l44}$Ce $^{l37}$Cs, analyzed from each spectrum, was used for the calculation of cooling time. The results show that the radioactive fission products $^{l44}$Ce and $^{l37}$Cs are considered as useful monitors for cooling time determination because the estimated cooling time by detection of activity ratio $^{l44}$Ce $^{l37}$Cs agreed well with the operator declared cooling time within relative difference of $\pm$5 % despite the low counting rate of the gamma-ray of $^{l44}$Ce (about 10$^{-3}$ count per second). For the samples with several different irradiation histories, the determined cooling time by modeled irradiation history showed good agreement with that by known irradiation history within time difference of $\pm$0.5 year. From this result, it would be expected to be possible to estimate reliably the cooling time of spent nuclear fuel without the exact information about irradiation history. The feasibility study on identification of and/or sorting out spent nuclear fuel by applying the technique for cooling time determination was also performed and the result shows that the detection of activity ratio $^{l44}$Ce $^{l37}$Cs by gamma-ray spectrometry would be usefully applicable to certify spent nuclear fuel for the purpose of safeguards and management in a facility in which the samples dismantled or cut from spent fuel assemblies are treated, such as the post irradiation examination facility.mination facility.

  • PDF

Study on Development of Embedded Source Depth Assessment Method Using Gamma Spectrum Ratio (감마선 스펙트럼 비율을 이용한 매립 선원의 깊이 평가 방법론 개발 연구)

  • Kim, Jun-Ha;Cheong, Jea-Hak;Hong, Sang-Bum;Seo, Bum-Kyung;Lee, Byung Chae
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.18 no.1
    • /
    • pp.51-62
    • /
    • 2020
  • This study was conducted to develop a method for depth assessment of embedded sources using gamma-spectrum ratio and for the evaluation of field applicability. To this end, Peak to Compton and Peak to valley ratio changes were evaluated according to 137Cs, 60Co, 152Eu point source depth using HPGe detector and MCNP simulation. The effects of measurement distance of PTV and PTC methods were evaluated. Using the results, the source depth assessment equation using the PTC and PTV methods was derived based on the detection distance of 50 cm. In addition, the sensitivity of detection distance changes was assessed when using PTV and PTC methods, and error increased by 3 to 4 cm when detection distance decreased by 20 cm based on 50 cm. However, it was confirmed that if the detection distance was increased to 100 cm, the effects of detection distance were small. And PTV and PTC methods were compared with the two distance measurement method which evaluates the depth of source by the change of net peak counting rate according to the detection distance. As a result of source depth assessment, the PTV and PTC showed a maximum error of 1.87 cm and the two distance measurement method showed maximum error of 2.69 cm. The results of the experiment confirmed that the accuracy of the PTV and PTC methods was higher than two distance measurement. In addition, Sensitivity evaluation by horizontal position error of source has maximum error of less than 25.59 cm for the two distance measurement method. On the other hand, PTV and PTC method showed high accuracy with maximum error of less than 8.04 cm. In addition, the PTC method has lowest standard deviation for the same time measurement, which is expected to enable rapid measurement.