본 연구에서는 e-러닝 기반 교육과정이 확대되면서 점차 확대되고 있는 정보보호 교육과정에 대해 분석하였다. e-러닝 분야는 정보화 기술의 발전과 더불어 급속도로 대학 전공 교육 분야에 적용되고 있으며 사이버공간을 통한 교육방식으로 그 적용 범위는 점차 확대되고 있다. e-러닝을 통한 교육과정 중에서 정보보호 전공은 정보통신부에서 추진하고 있는 IT839 등 차세대 신성장동력 유망분야 중에서 전문인력 양성을 위한 교육과정 분석이 시급한 분야이다. 본 연구에서는 국내 e-러닝 현황에 대한 분석을 기초로 오프라인 형태의 정보보호 전공을 e-러닝에 기반한 교육 과정에 적용하는 과정에서 필요로하는 전공 교과과정 구성 및 운영 방안 등에 대해 고찰하였다.
대내외 환경이 급격하게 변화함에 따라, 기업이 직면하는 보안 위협에 대한 보호대책 구현의 중요성이 점차 증대되고 있다. 이러한 상황에서 설계 초기 단계부터 보안을 접목하는 SbD(Security by Design, 보안내재화) 접근법의 필요성이 부각되고 있으며, 위협 모델링은 SbD의 핵심적인 도구로 인식되고 있다. 특히, 비용과 시간을 절약하기 위해 보안 문제를 조기에 발견하고 해결하는 Shift Left 전략의 적용을 위해서는 소프트웨어 개발자와 같은 보안 전문성이 부족한 직원의 위협 모델링 수행이 요구된다. 다양한 자동화된 위협 모델링 도구들이 출시되고 있으나, 보안 전문성이 부족한 직원이 사용하기엔 사용성이 부족하여 위협 모델링 수행에 제약이 따른다. 이를 해소하기 위해 위협 모델링 도구 관련 연구들을 분석하여 GQM접근법 기반의 사용성 평가기준을 도출하였다. 도출한 기준에 대한 전문가 설문을 진행하여 타당성과 객관성을 확보하였다. 위협 모델링 도구 3종(MS TMT, SPARTA, PyTM)의 사용성 평가를 수행하였으며, 평가 결과 MS TMT의 사용성 수준이 타 도구 대비 우세함을 확인하였다. 본 연구는 사용성 평가기준을 제시하여 보안 전문성이 부족한 직원도 효과적으로 위협 모델링을 수행할 수 있는 환경을 조성하는데 기여하는 것을 목표로 한다.
정보통신 환경의 발전으로 인하여 군사 시설의 환경 또한 많은 발전이 이루어지고 있다. 이에 비례하여 사이버 위협도 증가하고 있으며, 특히 기존 시그니처 기반 사이버 방어체계로는 막는 것이 어려운 APT 공격들이 군사 시설 및 국가 기반 시설을 대상으로 빈번하게 이루어지고 있다. 적절한 대응을 위해 공격그룹을 알아내는 것은 중요한 일이지만, 안티 포렌식 등의 방법을 이용해 은밀하게 이루어지는 사이버 공격의 특성상 공격 그룹을 식별하는 것은 매우 어려운 일이다. 과거에는 공격이 탐지된 후, 수집된 다량의 증거들을 바탕으로 보안 전문가가 긴 시간 동안 고도의 분석을 수행해야 공격그룹에 대한 실마리를 겨우 잡을 수 있었다. 본 논문에서는 이러한 문제를 해결하기 위해 탐지 후 짧은 시간 내에 공격그룹을 분류해낼 수 있는 자동화 기법을 제안하였다. APT 공격의 경우 일반적인 사이버 공격 대비 공격 횟수가 적고 알려진 데이터도 많지 않으며, 시그니처 기반의 사이버 방어 기법을 우회하도록 설계가 되어있으므로, 우회가 어려운 공격 모델 기반의 탐지 기법을 기반으로 알고리즘을 개발하였다. 공격 모델로는 사이버 공격의 많은 부분을 모델링한 MITRE ATT&CK®을 사용하였다. 공격 기술의 범용성을 고려하여 영향성 점수를 설계하고 이를 바탕으로 그룹 유사도 점수를 제안하였다. 실험 결과 제안하는 방법이 Top-5 정확도 기준 72.62%의 확률로 공격 그룹을 분류함을 알 수 있었다.
최근 제조업을 시작으로 농업, 금융업 등의 전 산업 영역에서 ICBM(IoT, Cloud, Bigdata, Mobile)을 중심으로 한 신산업과의 융합이 급속도로 진행되고 있다. 향후 융합산업의 가장 큰 문제 중 하나인 사이버 위협에 대비하기 위해 정보보호를 고려한 융합산업의 발전이 매우 중요한 상황이다. 이에 본 연구에서는 현재 발표된 산업발전정책과 이와 관련된 정보보호정책들의 세부 내용을 교차영향분석으로 분석하고 전문가 설문을 통해 정책의 우선순위를 제시하였다. 이를 통해 정보보호정책 내의 우선순위 및 상호 연관성을 밝히고, 효과적인 정책 시행방향에 대해서 제시하고자 하였다. 결과적으로 본 연구에서 도출한 6개의 정보보호정책과제들은 모두 핵심 동인에 속하며, 정책의 중요도를 고려한다면 보안 산업의 체질개선 및 지원 강화, 정보보호 인재양성, 정보보호산업 투자확대 등의 정책이 상대적으로 우선 시행될 필요가 있는 것으로 나타났다.
최근 발생하는 정보보안 사고는 정보통신기술의 발전과 더불어 전파속도나 그 피해규모 역시 빠른 속도로 증가하고 있다. 또한 미래 환경이 산업융합의 시대로 발전함에 따라 가상의 사이버 환경이 물리적인 환경까지 확장되면서 다양한 형태의 새로운 보안 위협이 발생하고 있다. 새롭게 대두되는 보안 위협을 해결하기 위해서는 전통적인 기술 위주의 단편화된 보안인재를 넘어서, 기술적 보호와 물리적 보호를 관리적 관점에서 아우를 수 있는 다차원적 보안역량을 가진 보안전문인력이 필요한 시점이다. 따라서 본 논문에서는 기존의 기술위주의 단편화된 정보보호 교육을 넘어서 산업융합 환경에 맞는 보안전문인력을 양성하기 위하여 직업분류체계별로 특색 있는 정보보호 교과목을 도출하고 이를 이용하여 각 직업군간의 이동시 추가로 교육이 필요한 교과목에 대한 분석을 실시하고자 한다. 본 연구결과는 기술적 관점의 정보보호 교과목과 경영 관리적 관점의 정보보호 교과목의 조화로운 융합을 통해 산업융합 환경에 어울리는 다차원적 보안인력을 육성하고, 정보보호 직업군간의 이동 시 각 직업군별 핵심 지식을 효과적으로 습득할 수 있는 교육훈련과정을 개발하는 데에도 긍정적인 영향을 미칠 것으로 기대된다.
Wu, Chunming;Wang, Meng;Gao, Lang;Song, Weijing;Tian, Tian;Choo, Kim-Kwang Raymond
KSII Transactions on Internet and Information Systems (TIIS)
/
제13권8호
/
pp.3917-3941
/
2019
The recent interest in artificial intelligence and machine learning has partly contributed to an interest in the use of such approaches for hyperspectral remote sensing (HRS) imagery classification, as evidenced by the increasing number of deep framework with deep convolutional neural networks (CNN) structures proposed in the literature. In these approaches, the assumption of obtaining high quality deep features by using CNN is not always easy and efficient because of the complex data distribution and the limited sample size. In this paper, conventional handcrafted learning-based multi features based on expert knowledge are introduced as the input of a special designed CNN to improve the pixel description and classification performance of HRS imagery. The introduction of these handcrafted features can reduce the complexity of the original HRS data and reduce the sample requirements by eliminating redundant information and improving the starting point of deep feature training. It also provides some concise and effective features that are not readily available from direct training with CNN. Evaluations using three public HRS datasets demonstrate the utility of our proposed method in HRS classification.
사이버 침해란 정보시스템의 취약한 부분을 공격하여 시스템 내부에 침입하거나 시스템을 마비/파괴하는 등의 사고를 유발하는 모든 행위를 말한다. 이러한 사이버 침해의 피해를 줄이기 위해 국내외 많은 연구 기관과 업체에서는 침입탐지시스템과 같은 정보보호 기술을 연구 개발하여 상용화하고 있다. 그러나 기존의 정보보호 기술은 이미 발생한 침해를 탐지하여 피해의 확산을 막는 데만 한정적으로 사용되고, 침해의 발생 가능성을 예측하지는 못하기 때문에 점차 첨단화, 다양화되고 있는 사이버 침해에 대응하기 힘들다는 문제점을 갖는다. 본 논문에서는 보안 취약점을 이용한 사이버 침해를 대상으로 전문가 설문을 통해 사이버 침해의 발생 가능성을 예측하는 방법을 제안하고, 이를 위한 사이버 침해 예측 항목을 추출하였다. 예측 항목 추출은 3 단계로 구성되며, 첫 번째 단계에서는 기존 연구와 사례 분석을 통해 예측 항목의 계층 구조를 생성한다. 두 번째 단계에서는 첫 번째 단계를 통해 생성된 예측 항목들을 델파이 방법을 통해 개선하여 최적의 예측 항목을 결정한다. 마지막 단계에서는 각 항목들에 대한 쌍대 비교 설문을 진행하여 항목 간 가중치를 추출한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.