• 제목/요약/키워드: Cyano functional group

검색결과 9건 처리시간 0.025초

Impact of Cyano and Fluorine Group Functionalization on the Optoelectronic and Photovoltaic Properties of Donor-Acceptor-π-Acceptor Benzothiadiazole Derived Small Molecules: A DFT and TD-DFT Study

  • Prabhat Gautam;Anurag Gautam;Neeraj Kumar
    • 한국재료학회지
    • /
    • 제33권6호
    • /
    • pp.236-241
    • /
    • 2023
  • Solar cells based on p-conjugated donor-acceptor (D-A) organic molecular systems are a promising alternative to conventional electrical energy generation. D-A molecular systems, which have a triphenylamine (TPA) moiety linked with a benzothiadiazole (BTD) moiety, open the potential development of new small molecule donors for bulk heterojunction (BHJ) solar cells. Here, a series of donor-acceptor-π-acceptor (D-A-π-A) small molecule donors (SMD) derived from triphenylamine (TPA) donor and benzothiadiazole (BTD) acceptor building blocks, were designed for BHJ organic solar cells. The small molecule donors SMD1-4 were studied using density functional theory (DFT) and time dependent-DFT (TDDFT) methods, to understand the effect of cyano and fluorine group functionalization on their properties. The effect of structure alteration by cyano and fluorine group functionalization on the optoelectronic properties, the calculated highest occupied molecular orbitals (HOMOs) and lowest unoccupied molecular orbitals (LUMOs) and the HOMO-LUMO gaps were theoretically explored. The Voc (open-circuit photovoltage) and fill factor (FF) for SMD1-4 were obtained with a PC71BM acceptor, which showed that these organic small molecules are potential small molecule donors for organic bulk heterojunction solar cells.

Synthesis and Light-Emitting Properties of Poly(phenylene ethynylene) derivative Containing Cyano substituent

  • Chi, Jun-Ho;Lee, Chang-Lyoul;Kim, Jang-Joo;Jung, Jin-Chul
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2004년도 Asia Display / IMID 04
    • /
    • pp.595-598
    • /
    • 2004
  • A novel poly(phenylene ethynylene) derivative containing cyano group as electron-transporting moiety was synthesized via Pd-catalyzed coupling reaction. The structures of the monomers and polymer were confirmed by spectroscopy. The polymer demonstrated a wide variation of solubility, optical absorption, electrical conductivity and electrochemical properties.

  • PDF

Novel 4,7-Dithien-2-yl-2,1,3-benzothiadiazole-based Conjugated Copolymers with Cyano Group in Vinylene Unit for Photovoltaic Applications

  • Kim, Jin-Woo;Heo, Mi-Hee;Jin, Young-Eup;Kim, Jae-Hong;Shim, Joo-Young;Song, Su-Hee;Kim, Il;Kim, Jin-Young;Suh, Hong-Suk
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권2호
    • /
    • pp.629-635
    • /
    • 2012
  • Two novel conjugated copolymers utilizing 4,7-dithien-2-yl-2,1,3-benzothiadiazole (DTBT) coupled with cyano (-CN) substituted vinylene, as the electron deficient moeity, have been synthesized and evaluated in bulk heterojunction solar cell. The electron deficient moeity was coupled with carbazole and fluorene unit by Knoevenagel condition to provide poly(bis-2,7-((Z)-1-cyano-2-(5-(7-(2-thienyl)-2,1,3-benzothiadiazol-4-yl)-2-thienyl)ethenyl)-alt-9-(1-octylnonyl)-9H-carbazol-2-yl-2-butenenitrile) (PCVCNDTBT) and poly(bis-2,7-((Z)-1-cyano-2-(5-(7-(2-thienyl)-2,1,3-benzothiadiazol-4-yl)-2-thienyl)ethenyl)-alt-9,9-dihexyl-9H-fluoren-2-yl) (PFVCNDTBT). The optical band gaps of PCVCNDTBT (1.74 eV) and PFVCNDTBT (1.80 eV) are lower than those of PCDTBT (1.88 eV) and PFVDTBT (2.13 eV), which is advantageous to provide better coverage of the solar spectrum in the longer wavelength region. The high $V_{oc}$ value of the PSC of PCVCNDTBT (~0.91 V) is attributed to its lower HOMO energy level ( 5.6 eV) as compared to PCDTBT ( 5.5 eV). Bulk heterojunction solar cells based on the blends of the polymers with [6,6]phenyl-$C_{61}$-butyric acid methyl ester ($PC_{61}BM$) gave power conversion efficiencies of 0.76% for PCVCNDTBT under AM 1.5, 100 mW/$cm^2$.

Reaction of Lithium Cyanoaluminum Hydride with Selected Organic Compounds Containing Representative Functional Groups. Comparison of Reducing Characteristics between Lithium and Sodium Cyanoaluminum Hydrides

  • Cha, Jin-Soon;Yu, Se-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • 제30권7호
    • /
    • pp.1588-1592
    • /
    • 2009
  • Lithium cyanoaluminum hydride (LCAH) was prepared by the metal cation exchange reaction of sodium cyanoaluminum hydride with lithium chloride in tetrahydrofuran. The reducing characteristics of LCAH were explored systematically by the reaction with selected organic compounds containing representative functional groups under the standardized conditions (tetrahydrofuran, 0 ${^{\circ}C}$). The reducing ability of LCAH was also compared with of the sodium derivative, sodium cyanoaluminum hydride (SCAH). Generally, the reducing behavior of LCAH resembles that of SCAH closely, but the reactivity of LCAH toward representative organic functional groups appeared to be stronger than that of SCAH. Thus, the regent reduces carbonyl compounds, epoxides, amides, nitriles, disulfides, carboxylic acids and their acyl derivatives to the corresponding alcohols or amines, at a relatively faster rate than that of SCAH. The cyano substitution, a strong election-withdrawing group, diminishes the reducing power of the parent metal aluminum hydrides and hence effects the alteration of their reducing characteristics.

First-principle investigations of the binding between carbon nanotubes and poly(acrylonitrile)

  • Lee, Juho
    • EDISON SW 활용 경진대회 논문집
    • /
    • 제4회(2015년)
    • /
    • pp.304-307
    • /
    • 2015
  • Carbon nanotubes (CNTs) have been widely accepted and used as the enhancer for polymer nano-composites due to their remarkable mechanical properties. Understandably, the CNT fiber-polymer matrix interface plays a major role in determining the properties of the CNT-polymer nano-composites. Here, using the LCAODFT Lab tool available on the EDISON Nano-Physics site, we performed first-principles density-functional theory calculations to determine the atomic configurations and binding energies of the CNTs in contact with polymers. For the polymer matrixes, we chose poly(acrylonitrile) (PAN), which is one of the most well-known polymer matrixes for the carbon nanofiber nanocomposites. Different chiralities and diameters of pristine CNTs were considered, and several PAN-CNT configurations were prepared based on the atomistic positions and directions of cyano group in PAN. The most favorable configuration of PAN was obtained when the PAN bound parallel to the surface of CNT. Our finding indicates the binding configurations are determined by the direction of the cyano group dominantly rather than the atomistic position of PAN, or the symmetry of CNTs. The result of increasing the length of CNT diameter suggests that PAN is inclinable to align evenly on the surface of relatively large size of CNT with the configuration parallel to the surface. These results obtained in this study will provide the starting point for the design of improved PAN-CNT composites for the next-generation ultra-strong and ultra-light carbon nanofibers.

  • PDF

Polarizing Group Attached Acrylates and Polymers Viewing High Refractive Index

  • Kwon, Ji-Yun;Kim, Bong-Gun;Do, Jung-Yun;Ju, Jung-Jin;Park, Seung-Koo
    • Macromolecular Research
    • /
    • 제15권6호
    • /
    • pp.533-540
    • /
    • 2007
  • We designed and successfully synthesized UV curable, functional acrylate monomers having a polarizing group, i.e., an electron-withdrawing and/or electron-donating group for the optical materials of high refractive index. Optical polymer films made from the functional methacrylate monomers were achieved with photo crosslinking under UV illumination. A monomer having amino and cyano groups (Dimer-CN) exhibited the highest refractive index ($n_{TE}$=1.595 at 850nm) among the studied methacrylate derivatives, due to the large polarizability of the dipolar monomer structures with electron-donating and withdrawing groups. By controlling the compositions of the functional acrylate monomer of copolymers, the refractive indices of the polymers were readily adjusted within a wide range of 1.498-1.595. The copolymers showed a high glass transition temperature $(T_g)$ and good thermal stability, which are desirable for optical applications. $T_g$ and $T_{10%}$ (10%-weight loss occurred) of the copolymers ranged from $120-140^{\circ}C$ and from $329-387^{\circ}C$, respectively.

Conformational Analysis and Electronic Properties of 2-Cyano-3-(thiophen-2-yl)acrylic Acid in Sensitizers for Dye-sensitized Solar Cells: A Theoretical Study

  • Balanay, Mannix P.;Kim, Se-Mi;Lee, Mi-Jung;Lee, Sang-Hee;Kim, Dong-Hee
    • Bulletin of the Korean Chemical Society
    • /
    • 제30권9호
    • /
    • pp.2077-2082
    • /
    • 2009
  • The conformational and electronic properties of 2-cyano-3-(thiophen-2-yl)acrylic acid (TCA) in analogues used as sensitizers in dye-sensitized solar cells was examined using density functional theory (DFT) and natural bond orbital analysis methods. A relaxed potential energy surface scan was performed on NKX-2677 by rotating the C-C bond between the thiophene and cyanoacrylic acid which yielded activation energy barriers of about 13 kcal/mol for both E and Z configurations. The most stable conformation of all the analogues was E-180 except for NKX-2587 which has an electrostatic repulsion between the oxygen of the coumarin and the nitrogen of the cyanoacrylic acid. The increase in the electron delocalization between the thiophene and cyanoacrylic acid influences the stability for most of the analogues. But for NKX-2600, even though there was a greater deviation from the planarity of TCA, the stability was mainly due to the presence of a weak hydrogen bond between the hydrogen of the methyl group of the amine located in the donor moiety and the nitrogen of the cyanoacrylic acid. The vertical excitation energies of the analogues containing TCA were calculated by time-dependent DFT method. There were slight differences in its vertical excitation energies but the oscillator strengths vary significantly especially in the case of NKX-2600.

Synthesis and Characterization of a Near-Infrared Optical Materials for Shielding Infrared Rays

  • 박수열;신승림;신종일;오세화;전근
    • 한국염색가공학회:학술대회논문집
    • /
    • 한국염색가공학회 2005년도 춘계학술발표회 논문집
    • /
    • pp.213-215
    • /
    • 2005
  • The metal complexes can be influenced not only by the central metal atoms and the substituent groups, but also by the native of the chelating atoms. For example, near-infrared absorbing chromophores were synthesized by the reaction of phenylenediamine derivatives with a solution of pottassium hydroxide followed by the addition of nickel(II) chloride. These dyes provide absorbing infrared light over 780-840 nm with an extinction coefficient of $2.5-6.0{\times}10^4$. By introduction of alkyl, alkoxyl, cyano, and other functional group into the parent dye, these dyes greatly improved the solubility in organic solvent. New near-infrared absorbing donor-acceptor chromophores have been investigated by varying the electron donating and accepting strength of the two halves of the molecule. The cyanine chromophores permit the simplest way of obtaining systems that absorb well into the near-infrared region of the spectrum. Cyanine dyes possess high extinction coefficients that initially increase with Increasing chain length. These chromophores could be useful in near-infrared optical materials.

  • PDF