• 제목/요약/키워드: Cutting-Simulation

검색결과 463건 처리시간 0.031초

VCM을 이용한 비원형 형상 가공의 궤적 오차 시뮬레이션 (Simulation of tracking errors for non-circular cutting using voice coil motor)

  • 황진동;곽용길;김선호;안중환
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.57-58
    • /
    • 2006
  • A Simulation model is developed to minimize the path tracking errors when the non-circular cutting is done by a VCM(voice coil motor) driven tool. The relationship between PWM(Pulse Width Modulation) duty ratio and velocity of voice coil motor is theoretically derived from combining the circuit equation for the coils and the motion equation for the magnetic rod of the voice coil motor. The path tracking errors are showed differently according to the rotational speed, the number of segments and the control period in digital control. Given a required accuracy in the non-circular cutting, the optimal values for those parameters are determined based on the developed simulation model.

  • PDF

NC선반 절삭공구마모 문제점 보정을 위한 CNC 성능개선 시스템 연구 (CNC System Improvement Research of NC Lathe Abrasion-Based on User Defined Module)

  • 박은식;김한식
    • 한국산업융합학회 논문집
    • /
    • 제11권3호
    • /
    • pp.135-140
    • /
    • 2008
  • This paper researched about Development Cutting Tool User Defined Module Based(PMCUDMS) on Simulation that was able to adapt themselves to rapid development of software and hardware to adopt. It is basic research that develops a scheme whereby technic make property. This paper theorized about to realize Cutting Tool User Defined Module Based on Simulation which is developing CNC Software flows from building Windows XP operating system's image that is possible realtime acting and multitasking to correct. And Cutting Tool User Defined Module Based on Simulation component which was consisted of basis OS, NC Code parser, Servo Motor Control, Simulator, Man-Machine Interface.

  • PDF

통합절삭 시뮬레이션 시스템용 선삭표면조도 시뮬레이션 알고리즘의 설계 (Design of an Algorithm to Simulate Surface Roughness in a Turning for an Integrated Machining Simulation System)

  • 장동영
    • 한국시뮬레이션학회논문지
    • /
    • 제8권1호
    • /
    • pp.19-33
    • /
    • 1999
  • The fundamental issues to evaluate machine tools performance through simulation pertain to the physical models of the machine tool itself and of process while the practical problems are related to the development of the modular software structure. It allows the composition of arbitrary machine/process models along with the development of programs to evaluate each state of machining process. Surface roughness is one of the fundamental factors to evaluate machining process and performance of machine tool, but it is not easy to evaluate surface roughness due to its tribological complexity. This paper presents an algorithm to calculate surface roughness considering cutting geometry, cutting parameters, and contact dynamics of cutting between tool and workpiece as well as tool wear in turning process. This proposed algorithm could be used in the designed virtual machining system. The system can be used to evaluate the surface integrity of a turned surface during the design and process planning phase for the design for manufacturability analysis of the concurrent engineering.

  • PDF

Straw to Grain Ratio Equation for Combine Simulation

  • Kim, Sang Hun;Gregory, James M.
    • Journal of Biosystems Engineering
    • /
    • 제40권4호
    • /
    • pp.314-319
    • /
    • 2015
  • Purpose: The ratio of straw to grain mass as a function of cutting height affects combine efficiency and power consumption and is an important input parameter to combine simulation models. An equation was developed to predict straw to grain ratios for wheat as a function of cutting height. Methods: Two mass functions, one for straw and one for grain, were developed using regression techniques and measured data collected in west Texas during the summer, and used to predict the straw to grain ratio. Results: Three equations were developed to facilitate the simulation of a combine during wheat harvest. Two mass functions, one for straw and one for grain, were also developed; a quadratic equation describes the straw mass with an $R^2$ of 0.992. An S-shaped curve describes the mass function for grain with an $R^2$ of 0.957. An equation for straw to grain ratio of wheat was developed as a function of cutting height. The straw to grain ratio has an $R^2$ value of 0.947. Conclusions: In all cases, the equations had $R^2$ values above 0.94 and were significant at the 99.9 percent probability level (alpha = 0.001). Although all three equations are useful, the grain mass and straw to grain ratio equations will have direct application in combine simulation models.

In-Process Evaluation of Surface Characteristics in Machining

  • Jang, Dong-Young;Hsiao, Alex
    • Tribology and Lubricants
    • /
    • 제11권5호
    • /
    • pp.99-107
    • /
    • 1995
  • This paper reported research results to develop an algorithm of on-lin evaluation of surface profiles and roughness generated by turning. The developed module consisted of computer simulation of surface profiles using mechanism of cutting mark formation and cutting vibrations, and online measurement of cutting vibrations. The relative cutting vibrations between tool and worpkiece were measured through an inductance pickup at the rate of one sample per rotation of the workpiece. The sampling process was monitored using an encoder to avoid conceling out the phase lag between waves. The digital cutting signals from the Analog-to-Digital converter were transferred to the simulation module of surface profile where the surface profiles were generated. The developed algorithm or surface generation in a hard turning was analyzed through computer simulations to consider the stochastic and dynamic nature of cutting process. Cutting tests were performed using AISI 304 Stainless Steel and carbide inserts in practical range of cutting conditions. Experimental results showed good correlation between the surface profiles and roughness obtained using the developed algorithm and the surface texture measured using a surface profilemeter. The research provided the feasibility to monitor surface characteristics during tribelogical tests considering wear effect on surface texture in machining.

밀링가공에서의 온도분포와 절삭력 예측을 위한 연구 (A Study on the Prediction of Temperature Distribution and Machining Force in the Milling Process)

  • 강재훈;송준엽;박종권
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2004년도 춘계학술대회 논문집
    • /
    • pp.394-397
    • /
    • 2004
  • This paper presents a simple analytic method using 2D simulation program for predications of cutting force and machining temperature in dry type milling process. And also, comparison of cutting force and machining temperature obtained from experiment and simulation work is accomplished to distinguish of suitability.

  • PDF

반응표면법을 이용한 구성방정식의 온도계수 결정과 절삭력 예측 (Determination of the Temperature Coefficient of the Constitutive Equation using the Response-Surface Method to Predict the Cutting Force)

  • 구병문;김태호;박정수
    • 한국기계가공학회지
    • /
    • 제20권10호
    • /
    • pp.9-18
    • /
    • 2021
  • The cutting force in a cutting simulation is determined by the cutting conditions, such as cutting speed, feed rate, and depth of cut. The cutting force changes, depending on the material and cutting conditions, and is affected by the heat generated during cutting. The physical properties for predicting the cutting force use constitutive equations as functions of the hardening term, rate-hardening term, and thermal-softening term. To accurately predict the thermal properties, it is necessary to accurately predict the thermal-softening coefficient. In this study, the thermal-softening coefficient was determined, and the cutting force was predicted, using the response-surface method with the cutting conditions and the thermal-softening coefficient as factors.

분자정역학 기법을 이용한 초미세 절삭특성에 관한 고찰 (Investigation of ultraprecision machining characteristics by molecular statics simulation method)

  • 정구현;이성창;김대은
    • 한국정밀공학회지
    • /
    • 제14권3호
    • /
    • pp.122-129
    • /
    • 1997
  • Machining technology has emerged to the point of performing atomic-scale fabrication. In tail paper atomic-scale machining characteristics are investigated by using Molecular Statics simulation method. The cutting model used in this work simulates machining with tools such as an AFM. It is shown that built-up edge formation and cutting forces depend on tool tip geometry. Also, the material flow during cutting is shown for various cutting conditions such as depth of cut, rake angle, and edge radius of tool.

  • PDF

CNC 호브 릴리빙 선반의 CAM 시스템 개발 (Development of the CAMSsystem for CNC Hob Relieving Lathe)

  • 양희구;김석일;박천홍;류근수
    • 한국CDE학회논문집
    • /
    • 제1권2호
    • /
    • pp.150-157
    • /
    • 1996
  • The hob is considered as an effective gear cutting tool for achieving the various gears such as spur gear, helical gear, worm gear and so on. To enhance the productivity and precision of hobs and the competitive ability of domestic CNC hob relieving lathes, a CAM system for CNC hob relieving lathe needs to be realized. In this study, the CAM system is developed based on the personal computer and C language. Besides the automatic generation of CNC data, the developed CAM system has the various capabilities related to the generation of tool path, the cutting simulation for verifying the generated CNC data and forecasting the cutting time, the DNC operation for communicating the CNC data with CNC controller by RS232C port, and the estimation of undercut length for verifying the hob cutting conditions.

  • PDF

CAD 모델에 기초한 모사절삭을 통한 가상절삭시스템 개발 (Development of a Virtual Machining System by a CAD Model Based Cutting Simulation)

  • 배대위;고태조;김희술
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 춘계학술대회 논문집
    • /
    • pp.942-946
    • /
    • 1997
  • In this research,we suggest a virtual machining system that can simulate sutting forces at the stage of design. Cutting forces,here, are modeled form the machanistic model of the ball end milling. To this end, we need undeformed chip thickness which is used for calculating chip load. It is derived form the z-map data of a CAD model. That is, chip load is the height difference between the cutting tool contact point and the workpiece at arbitrary position. The tool contact point is referred from the cutter location. Form the experimental verification, we can simulate machining process effectively to the slot and the side cutting of ball end mill.

  • PDF