• Title/Summary/Keyword: Cutting temperature

Search Result 573, Processing Time 0.033 seconds

High speed milling titanium alloy (Ti 합금의 고속가공시 밀링특성에 관한 연구)

  • Ming CHEN;Youngmoon LEE;Seunghan YANG;Seungil CHANG
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.454-459
    • /
    • 2003
  • The paper will present chip formation mechanism and surface integrity generation mechanism based on the systematical experimental tests. Some basic factors such as the end milling cutter tooth number, cutting forces, cutting temperature, cutting vibration, the chip status, the surface roughness, the hardness distribution and the metallographic texture of the machined surface layer are involved. the chip formation mechanism is typical thermal plastic shear localization at high cutting speed with less number og shear ribbons and bigger shear angle than at low speed, which means lack of chip deformation. The high cutting speed with much more cutting teeth will be beneficial to the reduction of cutting forces, enlarge machining stability region, depression of temperature increment, auti-fatigability as well as surface roughness. The burrs always exists both at low cutting speed and at high cutting speed. So the deburr process should be arranged for milling titanium alloy in any case.

  • PDF

A Study on the Effect of Cooled Water-Soluble-Cutting Fluids on the Machinability (수용성 절삭유제의 냉각성이 피삭성에 미치는 영향에 관한 연구)

  • 김정두
    • Tribology and Lubricants
    • /
    • v.4 no.2
    • /
    • pp.52-59
    • /
    • 1988
  • The purpose of this study is to establish a standard for proper selection of water soluble cutting fluids, such as Emulsion type, Semi-Synthetic type and synthetic type, by investigating cutting effects at the normal temperature(26$\circ$C) and cooling temperature(0$\circ$C) from the viewpoint of cooling and lubricant actions. This paper describes a relation among cutting force, surface roughness and cooled water soluble cutting fluids which are considered as effective restraints on Built up edge.

Study on the Selection of End Mill Shape to Improve Tool Life in End Mill Process of Ti-6Al-4V Alloy (Ti-6Al-4V 합금의 가공에서 공구 수명 향상을 위한 엔드밀 형상의 선정에 관한 연구)

  • Kim, Do Hyeog;Jung, Yoon Gyo;Cho, Young Tae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.11
    • /
    • pp.76-82
    • /
    • 2019
  • This study aims to find the shapes of an end-mill with low cutting temperature during the end-mill process of Ti-6Al-4V alloy. Such ${\alpha}-{\beta}$ titanium alloys are increasingly more used for their high tensile strength and high corrosion resistance. The cutting characteristics of Ti-6Al-4V alloy were studied using an analytical method validated by comparing the estimated cutting resistance with that from experiments. The end-mill shape was analyzed using an experimental method. The end-mill shape with low cutting resistance and low cutting temperature was confirmed by analyzing the signal-to-noise ratios for various conditions. Then, the factors with significance factor of 95% or more were determined in the variance analysis. Finally, an end-mill shape that can ensure a low cutting temperature was proposed.

A Study on Effect of Tool Wear Rate upon Cutting Tool Shape in a Titanium Rough Cut Machining (티타늄 황삭가공에 있어서 공구형상이 공구마모율에 미치는 영향에 관한 연구)

  • Jung, Hwa
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.10
    • /
    • pp.27-33
    • /
    • 2019
  • The aviation industry has grown beyond the simple processing and assembling of aircraft parts and now designs and exports finished aircraft. In this study, the vertical CNC milling rotational speed and feed rate were parameters to investigate the life of tools according to their shape: (flat, round, and ball end mill) in the rough cutting of titanium. These tools are widely used in aircraft manufacturing and assembly. The purpose of this study is to measure the cutting temperature generated during the cutting process and calculate the rate of tool wear. This will be accomplished by measuring the tool weight before and after cutting the specimen and to compare it with the results of previous studies. Our study showed that the maximum cutting temperature increased as cutting time, tool rotational speed, and feed rate increased. The highest cutting temperatures were recorded for the ball, round, and flat end mill, respectively. Tool wear for the ball, round, and flat end mill increased as the speed and feed rate increased. The flat end mill exhibited the highest rate of wear from a minimum of 0.62% to a maximum of 2.88%.

Prediction of Cutting Temperature in Flank Face at High Speed Steel in Orthogonal Turning (2차원 선삭시 고속도강 공구의 플랭크면 절삭온도 예측)

  • Jun, Tae-Ok;Bae, Choon--Eak
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.1
    • /
    • pp.222-231
    • /
    • 1996
  • Temperature distribution on the flank face in orthogonal turning with cutting tool of high speed steel is studied by using a finite element method and experiments. Experiments are carried out to verify the validity of the temperature measurement by using a thermoelectric couple junciton imbedded in a cutting tool of high speed steel. Good agreement is obtained between the analytical results and the experimental ones for the temperature distributions on flank face of cutting tool with igh speed steel. The analytical results show that the temperature on the top flank face of a tool is higher because of the difference of the friction velocity on each face of the tool.

A Finite Element Analysis for the Characteristics of Temperature and Stress in Micro-machining Considering the Size Effect (크기효과가 고려된 미소절삭시의 온도 및 응력특성에 관한 유한요소해석)

  • 김국원;이우영
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.10
    • /
    • pp.128-139
    • /
    • 1998
  • In this paper, a finite element method for predicting the temperature and stress distributions in micro-machining is presented. The work material is oxygen-free-high-conductivity copper(OFHC copper) and its flow stress is taken as a function of strain, strain rate and temperature in order to reflect realistic behavior in machining process. From the simulation, a lot of information on the micro-machining process can be obtained; cutting force, cutting temperature, chip shape, distributions of temperature and stress, etc. The calculated cutting force was found to agree with the experiment result with the consideration of friction characteristics on chip-tool contact region. Because of considering the tool edge radius, this cutting model using the finite element method can analyze the micro-machining with the very small depth of cut, almost the same size of tool edge radius, and can observe the 'size effect' characteristic. Also the effects of temperature and friction on micro-machining were investigated.

  • PDF

A Study on Prediction of Cutting Temperature in Flank Face ar High Speed Steel (고속도강공구의 플랭크면 절삭온도 예측에 관한 연구)

  • 전태옥;배춘익
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.19 no.1
    • /
    • pp.45-53
    • /
    • 1995
  • Temperature distribution on flank face in orthogonal turning with cutting tool of high speed steel is studied by using a finite element method and experiments. Experiments are carried out to verify the validity of the temperature measurement by using a thermoelectric couple junction imbedded in a cutting tool of high speed steel. Good agreement is obtained between the analytical results and the experimental ones for the temperature distributions on flank face of cutting tool with high speed steel. The analytical results show that the temperature on the top flank face of a tool is higher because of the difference of the friction velocity on each face of the tool.

  • PDF

Prediction of Cutting Temperature at High Speed Steel in Orthogonal Turning based on Finite Element Method (2차원 선삭시 유한요소법에 의한 고속도강공구의 절삭온도 예측)

  • Jun, Tae-Ok;Bae, Choon-Eek
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.10
    • /
    • pp.102-112
    • /
    • 1995
  • Temperature distribution on the rake face and flank face in orthogonal turning with cutting tool of high speed steel is studied by using a finite element method and experiments. Experiments are carried out to verify the validity of the temperature measurement by using a thermoelectric couple junction imbedded in a cutting tool of high speed steel. Good agreement is obtained between the analytical results and the experimental ones for the temperature distributions on both the rake face and flank face of cutting tool with high speed steel. The analytical results show that the temperature on the top flank face of a tool is higher than it on the top rake face of the tool because of the difference of the friction velocity on each face of the tool.

  • PDF

The Study on the Optimal Working Condition for Vibration, Surface Roughness and Cutting Temperature in End-milling (엔드밀 가공시 진동, 표면거칠기, 절삭온도에 미치는 최적가공조건에 관한 연구)

  • Hong, Do-Kwan;Kim, Dong-Young;Ahn, Chan-Woo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.12
    • /
    • pp.1322-1329
    • /
    • 2004
  • End-milling has been used widely in industrial system because it is effective to a material manufacturing with various shapes. Recently the end-milling processing is needed the high-precise technique with good surface roughness and rapid time in precision machine part and electronic part. The optimum mechanical vibration of main spindle, surface roughness and cutting temperature have an effect on end-milling condition such as, cutting direction, revolution of spindle, feed rate and depth of cut, etc. Therefore, this study carried to decide the working condition for optimum mechanical vibration of main spindle, surface roughness and cutting temperature using design of experiments, ANOVA and characteristic function. From the results of experimentation, mechanical vibration has an effect on revolution of spindle, radial depth of cut, and axial depth of cut. The surface roughness has an effect on cutting direction, revolution of spindle and depth of cut. And then the optimum condition used design of experiments is upward cutting In cutting direction, 600 rpm in revolution of spindle, 240 mm/min in feed rate, 2 mm in axial depth of cut and 0.25 mm in radial depth of cut. By design of experiments and characteristic function, it is effectively represented shape characteristics of mechanical vibration, surface roughness and cutting temperature in end-milling.

Study on the Surface Roughness of the Epoxy resins) (엑폭시 수지의 절삭가공시 표면거칠기에 관한 연구)

  • 김희남
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1996.10a
    • /
    • pp.64-74
    • /
    • 1996
  • The meachanism for cutting epoxy resins specimens which were specially provided was experimentally investigated to obtain a fine surface finish. the specimens were cut the three-dimensional undrer dry conditions using a lathe. the relationship between the topography of the cut surface due to the change rate of temperature of the cutting condition using sintered carbides (P20, K10, KT150) was investigated. the main results obtained are as follows: 1) The change rate of temperature of the cutting edge is increased in nearly proportion ot cutting speed feed rate depth of cut. 2)The profile of surface roughness were regulated k10 but irregulated P20 KT150. 3) The surface roughness value decreased K10 rather than P20 KT150. 3) The surface roughness value decreased K10 rather than P20 KT 150.4)The cutting resistance increased thrust force rather than cutting force due to the visco-elastic material of epoxy resins.

  • PDF