• Title/Summary/Keyword: Cutting signal characteristics

Search Result 50, Processing Time 0.025 seconds

Machining Characteristics of the Hybrid Machining System Comprising of EDM and Endmilling (방전과 엔드밀링이 결합된 하이브리드 공정의 가공특성)

  • Kim, Min-Yeop;Li, Chang-Ping;Kim, Jung-Hyun;Ko, Tae Jo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.3
    • /
    • pp.86-92
    • /
    • 2016
  • Mechanical milling, in association with electrical discharge machining (EDM) for hybrid machining, is presented in this paper. An end mill cutting tool, an electrode of the EDM, was used for the system. That means that some parts were cut by the mechanical cutting process and others by the EDM. The possibility of combining both processes was simulated with the cutting simulation software. In addition, the machining reality was verified by measuring the electrical signal from the EDM power supply, which was measured in time and frequency domains. From this initial research, the hybrid machining system proposed in this paper appears to be well suited for difficult to cut material processing.

Optimization of Surface Roughness of STS 304 in a Turning Process (STS304합금의 선삭가공에서 표면거칠기의 최적화)

  • Choi, Man Sung
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.1
    • /
    • pp.59-64
    • /
    • 2017
  • The general manufacturing problem can be described as the achievement of a predefined product quality with given equipment, cost and time constraints. Unfortunately, for some quality characteristics of a product such as surface roughness it is hard to ensure that these requirements will be met. Stainless steels STS 304 is frequently used as shaft materials in small fiber reinforced polymer(FRP) fishing boats. In this work, the dry turning parameters of STS 304 are optimized by using Taguchi method. The experiments were conducted at three different cutting speeds with three different feed and three different depth of cut. The cutting parameters are optimized using signal to noise ratio and the analysis of variance. The effects of cutting speed and feed on surface roughness was analyzed. The results revealed that the spindle speed is the more significant parameter influencing the surface roughness.

  • PDF

Design of a Ultrasonic Cutting-tool Utilizing Resonance Condition of Transverse Vibration of Beam Type Structure (보의 횡진동 공진특성을 이용한 초음파 진동절삭공구 설계)

  • Byun, Jin-Woo;Han, Sang-Bo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.8
    • /
    • pp.720-725
    • /
    • 2011
  • Most ultrasonic vibration cutting tools are operated at the resonance condition of the longitudinal vibration of the structure consisting of booster, horn and bite. In this study, a transverse vibration tool with beam shape is designed to utilize the vibration characteristics of the beam. Design point of the transverse vibration tool is to match the resonance frequency of the bite to the frequency of the signal to excite the piezoelectric element in the booster. The design process to match the natural frequency of the longitudinal vibration mode of the horn and that of the transverse vibration mode of the bite is presented. Dimensions of the horn and bite are searched by trend analysis through which the standard shapes of the horn and bite are determined. After the dimensions of each component of the cutting tool consisting of booster, horn and bite are determined, the assembled structure was experimentally tested to verify that true resonant condition is achieved and proper vibrational displacement are obtained to ensure that enough cutting force is generated.

Tool Monitoring System using Vision System with Minimizing External Condition (환경영향을 최소화한 비전 시스템을 이용한 미세공구의 상태 감시 기술)

  • Kim, Sun-Ho;Baek, Woon-Bo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.5
    • /
    • pp.142-147
    • /
    • 2012
  • Machining tool conditions directly affect to quality of product and productivity of manufacturing. Many researches performed for tool condition monitoring in machining process to improve quality and productivity. Conventional methods use characteristics of signal for cutting force, motor current consumption, vibration of machine tools and machining sound. Recently, diameter of machining tool is become smaller for minimizing of mechanical parts. Tool condition monitoring using conventional methods are relatively difficult because micro machining using small diameter tool has low machining load and high cutting speed. These days, the direct monitoring for tool conditions using vision system is performed actively. But, vision system is affected by external conditions such as back ground of image and illumination. In this study, minimizing technology of external conditions using distribution analysis of image data are developed in micro machining using small diameter drill and tap. The image data is gathered from vision system. Several sets of experiment results are performed to verify the characteristics of the proposed machining technology.

Development of Strain-gauge-type Rotational Tool Dynamometer and Verification of 3-axis Static Load (스트레인게이지 타입 회전형 공구동력계 개발과 3축 정적 하중 검증)

  • Lee, Dong-Seop;Kim, In-Su;Lee, Se-Han;Wang, Duck-Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.9
    • /
    • pp.72-80
    • /
    • 2019
  • In this task, the tool dynamometer design and manufacture, and the Ansys S/W structural analysis program for tool attachment that satisfies the cutting force measurement requirements of the tool dynamometer system are used to determine the cutting force generated by metal cutting using 3-axis static structural analysis and the LabVIEW system. The cutting power in a cutting process using a milling tool for processing metals provides useful information for understanding the processing, optimization, tool status monitoring, and tool design. Thus, various methods of measuring cutting power have been proposed. The device consists of a strain-gauge-based sensor fitted to a new design force sensing element, which is then placed in a force reduction. The force-sensing element is designed as a symmetrical cross beam with four arms of a rectangular parallel line. Furthermore, data duplication is eliminated by the appropriate setting the strain gauge attachment position and the construction of a suitable Wheatstone full-bridge circuit. This device is intended for use with rotating spindles such as milling tools. Verification and machining tests were performed to determine the static and dynamic characteristics of the tool dynamometer. The verification tests were performed by analyzing the difference between strain data measured by weight and that derived by theoretical calculations. Processing test was performed by attaching a tool dynamometer to the MCT to analyze data generated by the measuring equipment during machining. To maintain high productivity and precision, the system monitors and suppresses process disturbances such as chatter vibration, imbalances, overload, collision, forced vibration due to tool failure, and excessive tool wear; additionally, a tool dynamometer with a high signal-to-noise ratio is provided.

Blind Signal Processing for Impulsive Noise Channels

  • Kim, Nam-Yong;Byun, Hyung-Gi;You, Young-Hwan;Kwon, Ki-Hyeon
    • Journal of Communications and Networks
    • /
    • v.14 no.1
    • /
    • pp.27-33
    • /
    • 2012
  • In this paper, a new blind signal processing scheme for equalization in fading and impulsive-noise channel environments is introduced based on probability density functionmatching method and a set of Dirac-delta functions. Gaussian kernel of the proposed blind algorithm has the effect of cutting out the outliers on the difference between the desired level values and impulse-infected outputs. And also the proposed algorithm has relatively less sensitivity to channel eigenvalue ratio and has reduced computational complexity compared to the recently introduced correntropy algorithm. According to these characteristics, simulation results show that the proposed blind algorithm produces superior performance in multi-path communication channels corrupted with impulsive noise.

Mechanism of Micro-V Grooving with Single Crystal Diamond Tool (단결정 다이어몬드 공구를 이용한 Micro-V 홈 가공기구)

  • Park D.S.;Seo T.I.;Kim J.K.;Seong E.J.;Han J.Y.;Lee E.S.;Cho M.W.;Choi D.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1223-1227
    • /
    • 2005
  • Fine microgroove is the key component to fabricate micro-grating, micro-grating lens and so on. Conventional groove fabrication methods such as etching and lithography have some problems in efficiency and surface integrity. This study deals with the creation of ultra-precision micro grooves using non-rotational diamond tool and CNC machining center. The shaping type machining method proposed in the study allows to produce V-shaped grooves of $40\mu{m}$ in depth with enough dimensional accuracy and surface. For the analysis of machining characteristics in micro V-grooving, three components of cutting forces and AE signal are measured and processed. Experimental results showed that large amplitude of cutting forces and AE appeared at the beginning of every cutting path, and cutting forces had a linear relation with the cross-sectional area of uncut chip thickness. From the results of this study, proposed micro V-grooving technique could be successfully applied to forming the precise optical parts like prism patterns on light guide panel of TFT-LCD.

  • PDF

A Study on the Process Optimization of Brush Deburring Grinding System (브러시 디버링 연삭 시스템 공정 최적화에 대한 연구)

  • Shin, Kwan-Soo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.3
    • /
    • pp.394-400
    • /
    • 2012
  • Due to the increasing demand for carious methodologies, the quality improvement of products were introduced. A brush, the most frequently used type of grinding process, is one of the deburring. In order to produce consistent burr shape, various machining conditions have been combined and applied to disk grinding process. By tool dynamometer, acoustic emission sensor and acceleration sensor depend on changes in processing conditions(depth of engagement, cutting speed, workpiece position, workpiece orientation, cutting time) signals were obtained for brush deburring grinding system. Root mean square obtained by processing the signal processing conditions by analyzing the characteristics of deburring is to derive the optimum conditions.

Evaluation of Micro End-Milling Characteristics of AlN-hBN Composites Sintered by Hot-Pressing (열간가압소결에 의해 제조된 AlN-hBN 복합재료의 마이크로 엔드밀링 가공특성 평가)

  • Baek, Si-Young;Cho, Myeong-Woo;Seo, Tae-Il
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.6
    • /
    • pp.390-401
    • /
    • 2008
  • The objective of this study is to evaluate various machining characteristics of AlN-hBN machinable ceramics in micro end-milling process for its further application. First, AlN based machinable ceramics with hBN contents in the range of 10 to 20vol% were prepared by hot-pressing. Material properties of the composites, such as relative density, Vickers hardness, flexural strength, Young's modulus and fracture toughness were measured and compared. Then, micro end-milling experiments were performed to fabricate micro channels using prepared system. During the process, cutting forces, vibrations and AE signals were measured and analyzed using applied sensor system. Machined micro channel shapes and surface roughness were measured using 3D non-contact type surface profiler. From the experimental results, it can be observed that the cutting forces, vibrations and AE signal amplitudes decreased with increasing hBN contents. Also, measured surface roughness and profiles were improved with increasing hBN contents. As a result of this study, optimum machining conditions can be determined to fabricate desired products with AlN-hBN machinable ceramics based on the experimental results of this research.

Input Signal Model Analysis for Adaptive Beamformer (적응 빔형성기의 입력신호 모델 분석)

  • Mun, Ji-Youn;Hwang, Suk-Seung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.12 no.3
    • /
    • pp.433-438
    • /
    • 2017
  • Containing an Angle-of-Arrival(: AOA) estimation and interference suppression techniques, an adaptive beamformer is one of core techniques for the Signal Intelligence(: SIGINT) which collect various intelligence utilizing cutting edge devices including the radar and satellite. It generates a beam with the directivity in a corresponding direction, to efficiently receive a signal from the specific direction, using antenna array. In this paper, we present the received signal model including interference signals and noise, which can be applied to an input of the signal intelligence satellite system equipped with the AOA estimation and the interference cancellation techniques, and analysis the characteristics of various signals, which can be included in the proposed received signal model. This proposed signal model can be directly applied to the performance evaluation for a variety of beamforming techniques. Also, we verify the spectrum characteristic of the presented received signal model in the frequency domain through computer simulation examples.