• Title/Summary/Keyword: Cutting signal characteristics

Search Result 50, Processing Time 0.021 seconds

Tool Wear and Cutting Characteristics in the Machining of Die Material using Ceramic Toll (세라믹 공구를 이용한 금형강 가공시 공구마멸과 절삭특성)

  • 손창수
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.114-118
    • /
    • 1996
  • Evaluation of cutting condition is one of the most important aspect to improve productivity and quality. In this study, the wear and cutting characteristics(cutting force, acoustic emission signal and surface roughness) of ceramic cutting tool for hardened die material(SKD11) were investigated by experiment. Flank wear on relief face of tool was occurred more dominant than crater wear on rake face. Experiments were performed under the various cutting condition.

  • PDF

A Study on Machining Characteristics of Single-insert and Multi-insert Face Milling (단인과 다인 정면밀리의 가공특성에 관한 연구)

  • Kim, S.I.;Lee, W.R.;Kim, T.Y.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.4
    • /
    • pp.19-27
    • /
    • 1995
  • Face milling is required to study cutting process with a view of multipoint cutter. This experimental study mainly deals with the single and multi-insert cutting characteristics using coated tool. Because metal cutting of the single and multi-insert has a large relation to the improvement of productivity, the economic cutting process can be achieved by the analysis of proper metal cutting mechanism. Therefore, machining characteristics of face molling in this paper has been studied by investigating the role of different insert number which is concerned with mean cutting force, the RMS values of AE(acoustic emission) signal, tool life and surface roughness in milling SS 41 and SUS 304. The cutting force and AE signal are monitored to make an analysis of cutting process. The surface roughness of the specimens machined by inserts of different numbers is measured at different speeds, feeds and depth of cut. The width of flank wear is also observed.

  • PDF

Diagnosis of tool wear and fracture using cutting force signal characteristics and histogram analysis (절삭력 신호특성과 히스토그램 분석에 의한 공구마모와 파손 진단)

  • 정진용;유기현;서남섭
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.3
    • /
    • pp.75-81
    • /
    • 1997
  • Automatic monitoring the cutting state is one of the important problems to increase the reliability of modern machining processes. In this study, cutting force signals were used in order to monitor the tool wear and fracture in the turning process. Turning experiments were performed using cemented carbide insert tools(K20) and STS304 steel as a workpiece. Cutting force signal characteristics and histogram analysis method were used to recognize the cutting states. It was found that tool wear and fracture can be diagnosed from the cutting force signal coefficient of variation(C.V.) and histogram analysis.

  • PDF

A Study on the Signal Process of Cutting Forces in Turing Process and it's Application (l) -Chip Form monitoring through the Signal Process using Cutting Forces- (선삭가공에 있어서 절삭저항의 신호처리와 그 응용에 관한 연구 (l) -절삭저항의 신호처리에 의한 Chip Form 감지-)

  • Kim, Do-Young;Nam, Gung-Suk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.6 no.4
    • /
    • pp.61-70
    • /
    • 1989
  • A new analytical method is proposed to monitor the chip form of cutting forces applying the techinque of signal process. Cutting experiments are carried out under various cutting conditons and cutting forces are measured in-processing through Tool Dynamometer. In this report, auto-correlation functions, frequency characteristics of dynamic force, high frequency distribution and Peak/RMS values are calculated from the measured cutting forces, and the concept of method is also discussed. The experimental results show that six types of the form of chips are possible to classify from the signal of cutting forces not related to cutting conditions.

  • PDF

A Study on Tool Wear and AE Signal Characteristics in Face Milling of SUS304 (SUS304의 정면밀링 가공시 공구마모와 AE신호 특성에 관한 연구)

  • Oh, S.H.;Kim, S.I.;Kim, T.Y.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.3
    • /
    • pp.5-14
    • /
    • 1995
  • In recent years, the automization of cutting machine tools has been developed very fast. Hance, the in-process detection of cutting condition is very important for automatic manufacturing system in factory. Acoustic Emission(AE) has been widely used in monitoring the cutting conditions, because of high sensitivity of AE signal and low cost of AE equipment. This experimental study deals with the relations between AE signal, cutting force charcteristics and tool wear in the machining of SUS304. Face milling operation is used for the analysis between tool wear and AE signal.

  • PDF

A study on the characteristics of acoustic emission signal in dynamic cutting process (동적 절삭과정에서 AE 신호의 특성에 관한 연구)

  • Kim, Jeong-Suk;Kang, Myeong-Chang;Kim, Duk-Whan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.4
    • /
    • pp.69-76
    • /
    • 1994
  • AE(Acoustic Emission) signal is correlated to workpiece material, cutting conditions and tool geometry during metal cutting. The relationship between AE signal and cutting parameters can be obtained by theoretical model and experiments. The value of CR(Count Rate) is nearly constant in stable cutting, but when the chatter vibration occours, the value of CR is rapidly increased due to the vibration deformation zone. By experimental signal processing of AE, it is more effective than by RMS(Root Mean Square) measurement to detect the threshold of chatter vibration by CR measurement.

  • PDF

Investigation of Machined-Surface Condition and Machining Deformation in High-Speed Milling of Thin-Wall Aluminum 7075-T651 (알루미늄 합금(Al7075-T651)의 얇은 벽 고속밀링 가공 시 가공표면 상태와 가공변형 특성)

  • Koo, Joon-Young;Hwang, Moon-Chang;Lee, Jong-Hwan;Kim, Jeong-Suk
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.25 no.3
    • /
    • pp.211-216
    • /
    • 2016
  • Al alloys are useful materials having high specific strength and are used in machining of parts having thin-walled structures for weight reduction in aircraft, automobiles, and portable devices. In machining of thin-walled structures, it is difficult to maintain dimensional accuracy because machining deformation occurs because of cutting forces and heat in the cutting zone. Thus, cutting conditions and methods need to be investigated and cutting signals need to be analyzed to diagnose and minimize machining deformation and thereby enhance machining quality. In this study, an investigation on cutting conditions to minimize machining deformation and an analysis on characteristics of cutting signals when machining deformation occurs are conducted. Cutting signals for the process are acquired by using an accelerometer and acoustic emission (AE) sensor. Signal characteristics according to the cutting conditions and the relation between machining deformation and cutting signals are analyzed.

A Study on Machining Characteristics of Face Milling Using Coated Tool (코팅공구를 사용한 Face Milling의 가공특성에 관한 연구)

  • 이위로;김성일;김태영
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.10a
    • /
    • pp.106-111
    • /
    • 1993
  • This experimental study mainly deal with the single and multi-insert cutting characteristics using coated tool. Because metal cutting of the single and multi-insert has a large relation to the improvement of productivity, the economic cutting process can be achieved by the analysis of proper metal cutting mechanism. Therefore, machining characteristics of face milling in this paper has been studied by investigating the role of different insert number which is concerned with mean cutting force, the RMS values of AE(acoustic emission) signal, tool life and surface roughness in milling SS 41 and SUS 304.

  • PDF

Monitoring of Tool Wear using AE Signal in Interrupted cutting (단속절삭에서 AE신호를 이용한 공구마멸의 감시)

  • 김정석
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.6 no.2
    • /
    • pp.112-118
    • /
    • 1997
  • Characteristics of AE(Acoustic Emission) signal is related to cutting conditions, tool materials, and tool geometry in metal cutting. Relation between AE signal and tool wear was investigated experimentally. Experiment is carried out by interrupted cutting for SCM420 workpiece with TiN coating tool on HSS material. AE RMS voltage and count per event were increased according to tool wear. The major results are as follows : 1) AE RMS value is nearly constant as cutting speed changes, but is rapidly increase as feed rate increases. 2) AE RMS value and Count per Event increase as tool wear increases. 3) It is more effective to monitor tool wear by Incremental rate of AE RMS value than by Incremental rate of count per event.

  • PDF

A Study on Transient Chip Formation in Cutting with Self-Propelled Rotary Tools-Experimental Verification (자기추진 로타리 공구를 사용한 절삭에서 천이칩 형성에 관한 연구 - 실험에 의한 증명)

  • 최기흥;최기상;김정수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.8
    • /
    • pp.1910-1920
    • /
    • 1993
  • An experimental study to investigate the unconventional chip formation called triangulation of chip in cutting with a SPRT (self-propelled rotary tool) is performed using acoustic emission (AE) signal analysis. In doing that, a quantitative model of the AE RMS signal in triangulation with a SPRT is first developed. The predicted results from this model show good correlation between the AE RMS signal and the general characteristics of triangular chip formation. Then, effects of various process parameters such as cutting conditions (cutting speed, depth of cut, oblique angle and normal rake angle) and the work material properties on the chip formation in cutting with a SPRT are explored. Special attention is paid to the work material properties which are found to have significant effects on triangulation.