• Title/Summary/Keyword: Cutting path

Search Result 254, Processing Time 0.029 seconds

Development of Expert System for Burr Formation Prediction in Face Milling (II) - In Milling Multi Featured workpiece with Multi (밀링가공시 버 형성 예측을 위한 전문가 시스템 개발 (II) - 복잡한 형상의 피삭재와 다중경로에 의한 밀링가공시)

  • 고성림;김영진;장재은;이장범;김지환
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.12
    • /
    • pp.25-33
    • /
    • 2003
  • A burr has been defined as undesirable projection of material formed as a result of plastic flow from a cutting or shearing operation. It is unavoidable in all kinds of machining operation. As a result, burr makes troubles on manufacturing process due to deburring cost, quality of products and productivity. In this study, the primary interest is about exit burr. The burr formation mechanism in each type of burr is classified. Data bases are developed to predict burr formation result. In the milling operation, we develop an algorithm to analyze the burr formation mechanism by the geometrical analysis on the multi featured workpiece with multi cutting path. The algorithm includes three steps, i. e., the feature identification, the cutting condition identification, and the analysis on exit burr formation. We can predict which portion of workpiece would have the exit burr in advance so that we can manage to find a way to minimize the exit burr formation in an actual cutting. Also, this algorithm can be implemented in a commercial CAM package so that we can simulate the NC code to review the burr formation in advance.

Automatic Nesting and NC Cutting of Flat-Bar (선박용 플랫바의 자동 네스팅 및 가스/플라즈마에 의한 NC 절단)

  • Lee, Cheol-Soo;Park, Gwang-R.
    • IE interfaces
    • /
    • v.9 no.3
    • /
    • pp.283-297
    • /
    • 1996
  • The 'flat-bar' is a stiffener which is a component of ships. It is basically a long rectangle and has 'end-cut' shapes at both sides. The paper describes a fast nesting algorithm of the flat-bar, and a procedure to generate cutting path of gas/plasma torch, which is operated by a NC (numerically controlled) gas/plasma cutting machine. Proposed procedures are written in C-language and executable on VAX machine with Open VMS operating system.

  • PDF

Characteristics of Micro-Machining Using Two-Dimensional Tool Vibration

  • Ahn, Jung-Hwan;Lim, Han-Seok;Son, Seong-Min
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.2 no.3
    • /
    • pp.41-46
    • /
    • 2001
  • This paper discusses the feasibility of improving micro-machining accuracy by using two-dimensional(2-D) vibration cutting. Vibration cutting is generated by two piezo actuators arranged orthogonally : one is actuated by a sine curve voltage input, and the other is actuated by a phase-shifted sine curve voltage. A tool attached to the vibrator oscillates in a 2-D elliptical motion, depending on the frequencies, amplitudes, and the phase shifts of two input signals and the workpiece feedrate. Along the elliptical tool locus, cutting is done in the lower part, and non-cutting is done in the upper part. By this way a unique feature of 2-D vibration cutting, that is, air lubrication between a tool and chips, is caused. Another unique feature of 2-D vibration cutting was experimentally verified, that is, some negative thrust force occurs as the direction of chip movement on a tool rake face is reversed. Those features not only help chips flow smoothly and continuously but also reduce cutting force, which results in a higher quality machined surface. Through tool path simulations and experiments under several micro-machining conditions, the 2-D vibration cutting, compared to conventional cutting, was found to result in a great decrease in the cutting force, a much smoother surface, and much less burr.

  • PDF

Machined Profile Characteristics for Feedrate Change in Ball End Mill Cutting (볼엔드밀 가공시 이송변화에 따른 가공형상 특성)

  • 왕덕현;김원일;이윤경;임채열;우정윤;박창수
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.2
    • /
    • pp.95-102
    • /
    • 2002
  • Due to the development of the CNC machine tool and CAM software, sculptured surface machining can be broadly used in die and mold industries and ball end milling process is often used for the sculptured surface machining. It is found out how feedrate affects the precision of the machining and also tried to study the most suitable feedrate in specific cutting condition. Two eddy current sensors were used far measuring tool deflections of X, Y axis, dynamometer for cutting force and roundness tester for roundness. It was found that the tool deflection is getting better as tool path is going to further from the center of convex surface. The reason is that the cutting force is increased as the tool approaches to the center. Examining the roundness, cutting force and tool deflection characteristics, it was found that the most suitable feedrate is 90mm/min in convex surface and 120mm/min in concave surface.

Integrated Automation System of Pattern Design and $CO_2$ Laser Cutting for Diving Suits (잠수복 패턴 자동 설계 및 $CO_2$ 레이저 절단을 위한 통합 시스템 개발)

  • 윤세봉;강병수;강재관;김여숙
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.409-412
    • /
    • 2004
  • In this paper, an integrated automation system of pattern design and $CO_2$ laser cutting for diving suits is presented. Pattern design includes grading which creates a full-size range from a base pattern. Tool path for laser cutting from the patterns is generated in G-code format. $CO_2$ Laser cutting machine is developed to help cut the patterns with accuracy and speed. Aluminum profiles, ball screws, and stepping motors are engaged into the machine as frame structure, transfer unit, and driving devices respectively. The developed system is tested in dry suit cutting, convincing it can be readily introduced in driving suits manufacturing with respect to cost and efficiency.

  • PDF

Intelligent NURBS Surface Interpolation System with Embedded Online Tool-Path Planning (온라인 방식의 공구경로 계획을 내장한 지능형 NURBS 곡면 보간 시스템)

  • Koo, Tae-Hoon;Jee, Sung-Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.9 s.186
    • /
    • pp.156-163
    • /
    • 2006
  • The purpose of this study is to improve the machining of free-formed NURBS surfaces using newly defined G-codes which can directly deal with shapes defined from CAD/CAM programs on a surface basis and specialize in rough and finish cut. To this purpose, a NURBS surface interpolation system is proposed in this paper. The proposed interpolation system includes online tool-path planning, real-time interpolation and feedrate regulation considering an effective machining method and minimum machining time all suitable for unit NURBS surface machining. The corresponding algorithms are simultaneously executed in an online manner. The proposed NURBS surface interpolation system is integrated and implemented with a PC-based 3-axis CNC milling system. A graphic user interface (GUI) and a 3D tool-path viewer which interprets the G-codes for NURBS surfaces and displays whole tool-paths are also developed and included in our real-time control system. The proposed system is evaluated through actual machining in terms of size of NC data, machining time, regulation of feedrate and cutting force focused on finish cut in comparison with the existing method.

Routing Mechanism using Mobility Prediction of Node for QoS in Mobile Ad-hoc Network (모바일 애드-혹 네트워크에서 QoS를 위한 노드의 이동성 예측 라우팅 기법)

  • Cha, Hyun-Jong;Han, In-Sung;Yang, Ho-Kyung;Cho, Yong-Gun;Ryou, Hwang-Bin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.7B
    • /
    • pp.659-667
    • /
    • 2009
  • Mobile Ad-hoc Network consists of mobile nodes without immobile base station. In mobile ad-hoc network, network cutting has occurred frequently in node because of energy restriction and frequent transfer of node. Therefore, it requires research for certain techniques that react softly in topology alteration in order to improve reliability of transmission path. This paper proposes path selection techniques to consider mobility of node that respond when search path using AOMDV routing protocol. As applying proposed techniques, We can improve reliability and reduce re-searching number of times caused by path cutting.

Development of Steering Control System for Autonomous Vehicle Using Geometry-Based Path Tracking Algorithm

  • Park, Myungwook;Lee, Sangwoo;Han, Wooyong
    • ETRI Journal
    • /
    • v.37 no.3
    • /
    • pp.617-625
    • /
    • 2015
  • In this paper, a steering control system for the path tracking of autonomous vehicles is described. The steering control system consists of a path tracker and primitive driver. The path tracker generates the desired steering angle by using the look-ahead distance, vehicle heading, and a lateral offset. A method for applying an autonomous vehicle to path tracking is an advanced pure pursuit method that can reduce cutting corners, which is a weakness of the pure pursuit method. The steering controller controls the steering actuator to follow the desired steering angle. A servo motor is installed to control the steering handle, and it can transmit the steering force using a belt and pulley. We designed a steering controller that is applied to a proportional integral differential controller. However, because of a dead band, the path tracking performance and stability of autonomous vehicles are reduced. To overcome the dead band, a dead band compensator was developed. As a result of the compensator, the path tracking performance and stability are improved.

Modeling of Metal Cutting Using Finite Element Method (유한요소법을 이용한 금속절삭의 모델링)

  • 김경우;김동현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1799-1802
    • /
    • 2003
  • The commercial success of a new product is influenced by the time to market. Shorter product leadtimes are of importance in a competitive market. This can be achieved only if the product development process can be realized in a relatively small time period. New cutting inserts are developed by a time consuming trial and error process guided by empirical knowledge of the mechanical cutting process. The effect of previous cutting on chip formation and the surface residual stresses has been studied. The chip formation is not affected much. There is only a minor influence from the residual stress on the surface from tile first cutting on the second pass chip formation. Thus, it is deemed to be sufficient to simulate only the first pass. The influence of the cutting speed and feed on the residual stresses has been computed and verified by the experiments. It is shown that the state of residual stresses in the workpiece increases with the cutting speed. This paper presents experimental results which can be used for evaluating computational models to assure robust solutions. The general finite element code ABAQUS/Standard has been used in the simulations. A quasi-static simulation with adiabatic heating was performed. The path for separating the chip from the workpiece is predetermined. The agreement between measurements and calculation is good considering the simplifications introduced.

  • PDF