• Title/Summary/Keyword: Cutting heights

Search Result 38, Processing Time 0.031 seconds

Straw to Grain Ratio Equation for Combine Simulation

  • Kim, Sang Hun;Gregory, James M.
    • Journal of Biosystems Engineering
    • /
    • v.40 no.4
    • /
    • pp.314-319
    • /
    • 2015
  • Purpose: The ratio of straw to grain mass as a function of cutting height affects combine efficiency and power consumption and is an important input parameter to combine simulation models. An equation was developed to predict straw to grain ratios for wheat as a function of cutting height. Methods: Two mass functions, one for straw and one for grain, were developed using regression techniques and measured data collected in west Texas during the summer, and used to predict the straw to grain ratio. Results: Three equations were developed to facilitate the simulation of a combine during wheat harvest. Two mass functions, one for straw and one for grain, were also developed; a quadratic equation describes the straw mass with an $R^2$ of 0.992. An S-shaped curve describes the mass function for grain with an $R^2$ of 0.957. An equation for straw to grain ratio of wheat was developed as a function of cutting height. The straw to grain ratio has an $R^2$ value of 0.947. Conclusions: In all cases, the equations had $R^2$ values above 0.94 and were significant at the 99.9 percent probability level (alpha = 0.001). Although all three equations are useful, the grain mass and straw to grain ratio equations will have direct application in combine simulation models.

Effect of Cutting Height on Productivity and Forage Quality of Alfalfa in Alpine Area of Korea

  • Kim, Hak Jin;Li, Yan Fen;Jeong, Eun Chan;Ahmadi, Farhad;Kim, Jong Geun
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.41 no.3
    • /
    • pp.147-154
    • /
    • 2021
  • Cutting management has been identified as a critical factor in the alfalfa production systems because it has a significant impact on maximizing yield and maintaining the forage quality. The objective of this experiment was to determine the proper cutting height according to harvesting time for optimizing nutrient yield and forage nutritive quality of alfalfa grown in alpine regions of Korea. Alfalfa was sown at a seeding rate of 30 kg/ha in August 2018 and harvested at four cuttings in 2019 (3 May, 2 July, 11 September, and 13 October). Cutting heights were adjusted at 5, 15, and 25 cm above the soil surface. Alfalfa plant was tallest at the third cutting (109 cm), which was on average 35 cm taller than the first or second cutting. Relative feed value (RFV) remained unaffected by cutting height at the first harvest, but increased consistently in subsequent harvests as cutting height increased. Alfalfa collected at the first and fourth cuttings had the highest RFV (mean 152), which was on average 8 and 67 units higher than the second and third harvests, respectively. At each harvest, in vitro dry matter digestibility was highest in alfalfa cut at a 25-cm height. Dry matter (DM) production at each cutting height was highest in the first cutting, accounting for on average 36-37% of total annual DM production, and lowest in the fourth harvest, accounting for about 11-13% of the total DM yield. The total dry matter production (in four harvests) was 4,218 kg/ha higher when alfalfa was subjected to a cutting height of 5 cm rather than 25 cm. Cutting height had no effect on total crude protein yield, but from the first to fourth cutting, the protein yield followed a decreasing trend. Finally, there were visible declines in forage nutritive quality when alfalfa was cut at a shorter height. However, the magnitude of difference in total forage yield may outweigh the slight decline in forage quality when alfalfa is cut at a lower height. The findings of this study could help the alfalfa growers make better harvest management decisions.

Panel Cutting Method a New Approach in Hull Surface Panel Generation (패널절단법 선체표면 패널생성을 위한 새로운 시도)

  • Kim, Jin;Van, Suak-Ho;Park, Il-Ryong;Kim, Kwang-Soo;Choi, Hee-Jong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.43 no.6 s.150
    • /
    • pp.638-646
    • /
    • 2006
  • In this paper a new hull-panel generation algorithm named 'Panel Cutting Method' was developed to solve the flow phenomena around a ship advancing on the free surface with a constant speed. In this algorithm the non-linearity of the free surface boundary conditions was taken into account using the iterative method and the raised panel was used at each iteration step. Numerical calculations were performed to investigate the validity of the developed algorithm using the series $60(C_B=0.60)$ hull The wave resistance coefficients, the wave patterns and the wave heights were compared between the computed and the experimental results at Fn=0.25 and 0.316. The comparison showed good agreement between computation and experiment.

Effects of Cutting on Nodule Development and Nitrogen Fixation in Alfalfa (예취가 알팔파 근류의 발달과 질소고정활성에 미치는 영향)

  • Jong Won Ryoo;Ho Jin Lee
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.7 no.3
    • /
    • pp.128-134
    • /
    • 1987
  • This experiment was conducted to evaluate the effects of cutting in field and solution culture. Periodical samplings of alfalfa in cutting and uncutting plots were taken to measure nodule development and nodule activity. Regrowth of plant and nodule development after shoot cutting by different heights and nodule removal at different levels were investigated in solution culture of alfalfa plant. 1. Nodule weight in the field was reduced 30% after the first cutting and 25% after the second cutting, but during the following 30 days after second cutting, there was no significant difference between cutting and uncutting plots. 2. Specific nodule activities of cutting plots at the beginning of June and at the beginning of September were 80% and loo%, higher than those of uncutting plots respectively. Total nodule activities of cutting plots in late August and early September were 40% higher than those of uncutting plot. The decrease of nodule activity can be prevented by cutting at flowering stage. 3. The decrease of nodules in solution culture when 50% of the shoot was cut, was as much as that when shoot was not cut or flower buds were removered. But when 90% of the shoot was cut, the number of the nodules were decreased more remarkably than the above treatments. New nodules, when 90% of the shoot was cut, were reformed slowly and did not grow fully until 15 days after cutting.

  • PDF

Yield and Species Composition of Binary Mixtures of Kura Clover with Kentucky Bluegrass, Orchardgrass, or Smooth Bromegrass

  • Kim, B.W.;Albrecht, K.A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.7
    • /
    • pp.995-1002
    • /
    • 2008
  • Kura clover (Trifolium ambiguum M. Bieb.) is a rhizomatous perennial legume that has potential as a forage crop in the North-Central USA because of its excellent persistence under environmental extremes. Little information is available about defoliation effects on productivity of mixtures of kura clover with grasses typically grown in this region. Two field trials were conducted to evaluate the effects of defoliation management on yield and species composition of binary mixtures of 'Rhizo' kura clover with 'Comet' orchardgrass (Dactylis glomerata L.), 'Badger' smooth bromegrass (Bromus inermis Leyss.), 'Park' Kentucky bluegrass (Poa pratensis L.), and solo-seeded kura clover near Arlington, WI. Three harvest schedules (three, four, or five times annually) and two cutting heights (4 or 10 cm) were imposed. Infrequent defoliation and lower cutting height produced significantly greater total forage yield, 6.6, 5.8, and 5.2 Mg/ha in 3-, 4-, and 5-harvest systems, respectively; and 6.5 and 5.2 Mg/ha for the 4- and 10-cm cutting height, respectively. Averaged over 3 yr and two environments, mixtures had higher forage productions than solo kura clover (6.3, 5.7, and 6.0 Mg/ha for the Kentucky bluegrass, orchardgrass, and smooth bromegrass mixtures, respectively; compared to 5.2 Mg/ha for solo kura clover). The proportion of kura clover in mixtures increased from yr 1 to yr 2 and was constant from yr 2 to yr 3 (34, 58, and 57%, respectively). We conclude that kura clover has excellent potential as a long-term component of grass-legume mixtures regardless of the cutting height, harvest frequency or grass species, even though the proportion of kura clover in harvested forage was significantly greater with less frequent harvest and shorter cutting height of all mixtures.

Effect of Cutting Height on the Winter Survival, Early Spring Yield and Energy Production of Italian ryegrass II. Comparison of chemical composition, energy production and relationship of yields (월동전 예취 높이가 북방형목초의 월동성 , 이른봄 수량 및 양분생산에 미치는 영향 II. 초종별 예취 높이에 따른 일반성분 함량변화 , Energy 생산성 및 상관관계)

  • 신재순;박근제;차동호;이필상;윤익석
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.8 no.1
    • /
    • pp.20-25
    • /
    • 1988
  • This experiment was conducted to find out the effects of the different cutting height on the chemical composition, energy production and relation of yields of Italian ryegrass, tall fescue and perennial ryegrass swards. It was carried out on the experimental field of Livestock Experiment Station, in Suweon, from Sept. 1986 to May 1987. The results obtained are summarized as follows: 1. Chemical composition and Van Soest fiber contents were slightly different among grasses. But were not same trend with cutting heights. At the late vegetative stage, crude protein and crude fiber content were much more in tall fescue, Ash in perennial ryegrass, E.E. and NFE in Italian ryegrass respectively. NDF, ADF, Hemicellulose, Lignin, Cellulose and Silica contents were much more in tall fescue than the others. 2. DM, DCP, TDN, StE, ME and NEL productions were appeared to high in line with Italian ryegrass, perennial ryegrass and tall fescue. In addition 6 cm cutting height was the most production in Italian ryegrass, 15 cm cutting height was the most production in perennial ryegrass and tall fescue. 3. The much more content of crude protein, the less nonstructural carbohydrate content. The less content of NDF, the much more nonstructural carbohydrate content. Green and dry matter yield before wintering were not influence the green and dry matter yield of the late vegetative stage, but green yield before wintering influenced total green yield.

  • PDF

Forage Quality Management of Kura Clover in Binary Mixtures with Kentucky Bluegrass, Orchardgrass, or Smooth Bromegrass

  • Kim, B.W.;Albrecht, K.A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.3
    • /
    • pp.344-350
    • /
    • 2011
  • Kura clover (Trifolium ambiguum M. Bieb.) is a potentially useful perennial legume because of its excellent nutritive value and persistence under environmental extremes. However, information about forage quality of kura clover - grass mixtures adapted to the North-Central USA is limited. Objectives of this research were to determine forage nutritional value of kura clover-grass mixtures under different harvest frequency and cutting height regimes. 'Rhizo' kura clover was grown alone and in binary mixtures with 'Park' Kentucky bluegrass (Poa pratensis L.), 'Comet' orchardgrass (Dactylis glomerata L.), and 'Badger' smooth bromegrass (Bromus inermis Leyss.) at the Arlington Agricultural Research Station located near Madison, WI. Three harvest frequencies ($3{\times}$, $4{\times}$, or $5{\times}$ annually) and two cutting heights (4- or 10-cm) were imposed on each binary mixture and on kura clover grown alone. Higher nutritive value was observed in the binary mixtures with more frequent harvest and lower cutting height. Averaged over 3 years and all harvest frequency and cutting height treatments, the nutritive value of the Kentucky bluegrass and smooth bromegrass mixtures was superior to that of the orchardgrass mixture ($410\;g\;kg^{-1}$ NDF and $194\;g\;kg^{-1}$ CP in the Kentucky bluegrass mixture; $405\;g\;kg^{-1}$ NDF and $188\;g\;kg^{-1}$ CP in the smooth bromegrass mixture; $435\;g\;kg^{-1}$ NDF and $175\;g\;kg^{-1}$ CP in the orchardgrass mixture). All of the mixtures and harvest management systems evaluated in this study produced forage with quality equivalent to "grade one" alfalfa hay and suitable for highproducing livestock, even though the highest quality was observed in the Kentucky bluegrass mixture with $5{\times}$ harvesting at the shorter cutting height.

Comparison of Productivity and Feed Value of Silage Corn according to the Cutting Height

  • Yan Fen Li;Li Li Wang;Young Sang Yu;Xaysana Panyavong;Hak Jin Kim;Jong Geun Kim
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.43 no.3
    • /
    • pp.129-137
    • /
    • 2023
  • Corn silage is extensively utilized in ruminant feeding on a global scale, with substantial research efforts directed towards enhancing its nutritional worth and managing moisture content. The purpose of this study was to assess the impact of normal cutting height and elevated cutting height on whole-crop corn silage. Corn was harvested at heights of 15 cm and 45 cm above the ground, respectively, 45 days after heading. The harvested corn was cut into 2-3 cm lengths and packed into 20-liter plastic silos in triplicate. The results showed that dry matter (DM), crude protein (CP), water soluble carbohydrates (WSC), and in vitro dry matter digestibility (IVDMD) of C45 were significantly higher than those of the control, while the neutral detergent fiber (NDF) was significantly lower in C45 (p<0.05). The C15 had higher yields than C45 (p<0.05). There was no significant difference in the total digestible nutrients (TDN) yield of whole-crop corn silage. The increase in cutting height resulted in a larger change in moisture content and NDF per centimeter. After 60 days-ensiling, C45 showed significantly lower NH3-N concentrations. Moreover, C45 had significantly higher lactic acid concentration, lactic acid/acetic acid ratio, and lactic acid bacteria count compared to the control. Mold was not detected and the yeast count was less than 2 log10 cfu/g fresh matter in both control and C45. In summary, C45 improved the feeding value and fermentation quality of whole-crop corn silage at the expense of forage productivity.

Effects of Different Cutting Height on Nutritional Quality of Whole Crop Barley Silage and Feed Value on Hanwoo Heifers

  • Kim, Dong Hyeon;Amanullah, Sardar M.;Lee, Hyuk Jun;Joo, Young Ho;Han, Ouk Kyu;Adesogan, Adegbola T.;Kim, Sam Churl
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.9
    • /
    • pp.1265-1272
    • /
    • 2016
  • The present study evaluated the effects of different cutting height on nutritive value, fermentation quality, in vitro and in vivo digestibility of whole crop barley silage. Whole crop barley forage (Yuyeon hybrid) was harvested at height of 5, 10, and 15 cm from the ground level. Each cutting height was rolled to make round bale and ensiled for 100 days. After 100 days of ensiling, pH of silage was lower (p<0.05) in 5 cm, but no difference between 10 and 15 cm of cutting height. The content of lactate and lactate to acetate ratio were increased (p<0.05) in 5 cm of cutting height, whereas the acetate content was higher (p<0.05) in 10 and 15 cm than that of 5 cm cutting height. Aerobic stability was greater (p<0.05) in silages of 10 and 15 cm of cutting height. Three total mixed rations (TMR) were formulated with silages from the three different cutting heights (TMR5, TMR10, and TMR15) incorporated as forage at 70:30 ratio with concentrate (dry matter [DM] basis). In vitro dry matter digestibility was higher (p<0.05) in the TMR5 and TMR10 than that in TMR15, whereas in vitro neutral detergent fiber digestibility was higher (p<0.05) in the TMR10 and TMR15 than that in TMR5. Concentration of $NH_3-N$ was highest (p<0.05) in the TMR10 followed by TMR15 and TMR5. Total volatile fatty acid was decreased (p<0.05) with increased cutting height. The digestibility of DM and neutral detergent fiber were highest (p<0.05) in TMR15, than those in TMR5 and TMR10, whereas acid detergent fiber digestibility was higher (p<0.05) in TMR5 than that in TMR10. The results showed that increasing cutting height, at least up to 10 to 15 cm, of whole crop barley forage at harvest (Yuyeon) may be beneficial for making silage for TMR formulation and increasing digestibility of DM and NDF.

Effects of Rice Straw Incorporation by Cutting Methods on Soil Properties and Rice Yield in a Paddy Field (볏짚 혼입이 논 토양개선 및 쌀수량에 미치는 영향)

  • Yang, Chang-Hyu;Kim, Taek-Kyum;Ryu, Jin-Hee;Lee, Sang-Bog;Kim, Sun;Baek, Nam-Hyun;Choi, Weon-Young;Chung, Doug-Young;Kim, Si-Ju
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.6
    • /
    • pp.1047-1050
    • /
    • 2010
  • This study was to investigate the effects of rice straw incorporation by cutting height on paddy soil fertility. The average residual amount of rice straw by cutting height were showed 1,420 kg $ha^{-1}$, 1,850 kg $ha^{-1}$, and 2,400 kg $ha^{-1}$ for depths of 10 cm, 15 cm, and 20 cm, respectively. For soil physical properties, soil hardness and bulk density were decreased while porosity was increased by rice straw incorporation. But soil organic matter (SOM), available silicate content, and cation exchange capacity (CEC) were significantly decreased when rice straw was removed from the field. These results indicated that the SOM as residual amount of rice straw was influenced by level of cutting height. Milled rice yield was increased by 28% and 32% for cutting heights of 15 cm and 20 cm, compared with that of control, respectively. The number of spikelets per square meter and the percentage of ripeness were increased with increasing incorporation by lower level of cutting height of rice straw. Therefore, incorporation of rice straw practices under cutting method influenced soil improvement and rice yield in paddy field.