• Title/Summary/Keyword: Cutting force regulation

Search Result 32, Processing Time 0.021 seconds

Feed Optimization Based on Virtual Manufacturing for High-Efficiency Turning (고능률 선삭 가공을 위한 가상 가공 기반의 이송량 최적화)

  • Kang, You-Gu;Cho, Jae-Wan;Kim, Seok-Il
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.9
    • /
    • pp.960-966
    • /
    • 2007
  • High-efficient machining, which means to machine a part in the least amount of time, is the most effective tool to improve productivity. In this study, a new feed optimization method based on virtual manufacturing was proposed to realize the high-efficient machining in turning process through the cutting power regulation. The cutting area was evaluated by using the Boolean intersection operation between the cutting tool and workpiece. And the cutting force and power were predicted from the cutting parameters such as feed, depth of cut, spindle speed, specific cutting force, and so on. Especially, the reliability of the proposed optimization method was validated by comparing the predicted and measured cutting forces. The simulation results showed that the proposed optimization method could effectively enhance the productivity in turning process.

Diagnosis and Control of Machining States in Micro-Drilling for Productivity Enhancement (미세구멍 가공의 생산성 향상을 위한 상태식별 및 제어)

  • 정만실;조동우
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.1
    • /
    • pp.117-129
    • /
    • 1998
  • Micro-hole drilling (holes less than 0.5 mm in diameter with aspect ratio larger than 10) is recently having more attention in a wide spectrum of precision production industries. Alternative methods such as EDM. laser drilling, etc. can sometimes replace the mechanical micro-hole drilling but are not acceptable in PCB manufacture because of the inferior hole quality and accuracy. The major difficulties in micro-hole drilling are related to small signal to noise ratios, wandering motions of the inlet stage, high aspect ratios, high temperatures and so forth. Of all the difficulties. the most undesirable one is the increase of drilling force as the drill proceeds deeper into the hole. This is caused mainly from the chip effects. Peck-drilling is thus widely used for deep hole drilling despite that it suffers from low productivity. In the paper, a method of cutting force regulation is proposed to achieve continuous drilling. A PD and a sliding mode control algorithms were implemented through controlling the spindle rotating frequency. Experimental results show that the sliding mode control reduces the nominal cutting force and the variation of the cutting force better than the PD control. The advantages of the regulation, such as increase of drill life, fast stabilization of a wandering motion, and the precise positioning of the hole are verified in experiment.

  • PDF

Cutter Runout Elimination in End Milling through Two-Axes PI Force Control (엔드밀 가공에서 2축 절사력 PI 제어를 통한 커터 런아웃 제거에 관한 연구)

  • Noh, Jong-Ho;Hwang, Joon;Liang, Steven Y.;Chung, Eui-Sik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.6
    • /
    • pp.83-89
    • /
    • 1999
  • This paper presents the in-process runout compensation methodology to improve the surface quality of circular contouring cut in end milling process. The runout compensation system is based on the manipulation of workpiece position relative to cutter in minimizing the cutting force oscillation at spindle frequency. the basic concept of this approach is realized on a end milling machine whose machining table accommodates a set of orthogonal translators perpendicular to the spindle axis. The system performed that measuring the runout related cutting force component, formulating PI controlling commands, and the manipulating the workpiece position to counteract the variation of chip load during the circular contouring cut. To evaluate the runout compensation system performance, experimental study based on the implementation of two-axes PI force control is presented in the context of cutting force regulation and part surface finish improvement.

  • PDF

A Study on feedrate Optimization System for Cutting Force Regulation (절삭력 추종을 위한 이송속도 최적화 시스템에 관한 연구)

  • 김성진;정영훈;조동우
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.4
    • /
    • pp.214-222
    • /
    • 2003
  • Studies on the optimization of machining process can be divided into two different approaches: off-line feedrate scheduling and adaptive control. Each approach possesses its respective strong and weak points compared to each other. That is, each system can be complementary to the other. In this regard, a combined system, which is a feedrate control system fur cutting force optimization, was proposed in this paper to make the best of each approach. Experimental results show that the proposed system could overcome the weak points of the off-line feedrate scheduling system and the adaptive control system. In addition, from the figure, it can be confirmed that the off-line feedrate scheduling technique can improve the machining quality and can fulfill its function in the machine tool which has a adaptive controller.

Afeedrate Override Control System for the Cutting Force Regulation (일정절삭력 제어를 위한 이송속도 적응제어 시스템)

  • 김창성;박영진;정성종
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.10a
    • /
    • pp.321-327
    • /
    • 1993
  • In order to maintain the cutting force at a desired level during peripheral end milling processes in spite of variation of the depth of cut and other machining conditions, a feedrate override. Apaptive Control Constraint (ACC) system are developed. Feedrate override was accomplished by a developed MMC board and PMC interface techniques. Nonlinear model of the cutting process was linearized as an adaptive model with time varying paramrters. Integral type estimators were introduced for on-line identification of cutting and control parameters in peripheral and milling processes. Zero Order Jold (ZOH) type degital control methodology which uses pole-placement concepts was applied for the ACC system. Performance of the developed ACC system was confirmed on the vertical machining center equipped with FANUC OMC for a large amount of experiment

  • PDF

Adaptive Cross-Coupling Control System Considering Cutting Effects (절삭효과를 고려한 적응 교차축 연동제어 시스템)

  • Ji, Seong-Cheol;Yu, Sang-Pil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.8
    • /
    • pp.1480-1486
    • /
    • 2002
  • In this study, the cross-coupling control (CCC) with three new features is proposed to maintain contour precision in high-speed nonlinear contour machining. One is an improved contour error model that provides almost exact calculation of the errors. Another is the utilization of variable controller gains based on the instantaneous curvature of the contour and the variable command. For this scheme, a stability is analyzed. As a result, the stability region is obtained, and the variable gains are decided within that region. The other scheme in the proposed CCC is a real-time feedrate adaptation module to regulate cutting force fur better surface finish through regulation of material removal rate (MRR). The simulation results show that the proposed CCC system can provide better precision than the existing method particularly in high-speed machining of nonlinear contours.

Intelligent NURBS Surface Interpolation System with Embedded Online Tool-Path Planning (온라인 방식의 공구경로 계획을 내장한 지능형 NURBS 곡면 보간 시스템)

  • Koo, Tae-Hoon;Jee, Sung-Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.9 s.186
    • /
    • pp.156-163
    • /
    • 2006
  • The purpose of this study is to improve the machining of free-formed NURBS surfaces using newly defined G-codes which can directly deal with shapes defined from CAD/CAM programs on a surface basis and specialize in rough and finish cut. To this purpose, a NURBS surface interpolation system is proposed in this paper. The proposed interpolation system includes online tool-path planning, real-time interpolation and feedrate regulation considering an effective machining method and minimum machining time all suitable for unit NURBS surface machining. The corresponding algorithms are simultaneously executed in an online manner. The proposed NURBS surface interpolation system is integrated and implemented with a PC-based 3-axis CNC milling system. A graphic user interface (GUI) and a 3D tool-path viewer which interprets the G-codes for NURBS surfaces and displays whole tool-paths are also developed and included in our real-time control system. The proposed system is evaluated through actual machining in terms of size of NC data, machining time, regulation of feedrate and cutting force focused on finish cut in comparison with the existing method.

Intelligent NURBS Surface Interpolator with Online Tool-Path Planning (온라인 방식의 지능형 NURBS 곡면 보간기)

  • 구태훈;지성철
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.471-474
    • /
    • 2004
  • In this paper, a NURBS surface interpolator is proposed which can deal with shapes defined from CAD/CAM programs on a surface basis and can improve contour accuracy. The proposed interpolator is based on newly defined G-codes and includes online tool-path planning suitable for NURBS surface machining. The real-time interpolation algorithm, considering an effective machining method for each machining process and minimum machining time, is executed in an online manner. The proposed interpolator is implemented on a PC-based 3-axis CNC milling system and evaluated through actual machining in terms of machining time and regulation of feedrate and cutting force in comparison with the existing method.

  • PDF

Adaptive Control by the Fusion of Genetic Algorithms and Fuzzy Inference on Micro Hole Drilling (미세드릴가공에 있어서 유전알고리즘과 퍼지추론의 합성에 의한 적응제어)

  • Paik, In-Hwan;Chung, Woo-Seop;Kweon, Hyeog-Jun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.9
    • /
    • pp.95-103
    • /
    • 1995
  • Recently the trends toward reduction in size of industrial products have increased the application of micro drilling. But micro drilling has still much difficulty so that the needs for active control which give adaptation to controller are expanding. In this paper initial cutting condition was determined for some sorkpieces by experiment and GA-based Fuzzy controller was devised by genetic algorithms and fuzzy inference. The fuzzy inference has been applied to the various prob- lems. However the determination of the membership function is one of the difficult problem. So we introduce a genetic algorithms and propose a self-tuning method of fuzzy membership function. Based on this intelligent control, automation of micro drilling was carried out like the cutting process of skilled machinist.

  • PDF

Study on Tool Wear and Cutting Forces by Tool Properties in CFRP Drilling (CFRP 드릴링 공정에서의 공구의 특성에 따른 절삭부하와 공구마모 거동의 고찰)

  • Park, Dong Sub;Jeong, Yeong Hun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.4
    • /
    • pp.83-88
    • /
    • 2017
  • Recently, the use of advanced materials with light weight significantly increases because of global regulation on CO2 emission. Especially, CFRP (carbon fiber reinforced plastics) one of the most promising advanced materials. Since CFRP has pretty higher strength per unit weight than steel, it is one of most popular materials in aviation industry and its application to automobile rises sharply. Especially, one of the frequent machining processes for CFRP is drilling to make a hole, however, CFRP drilling has troublesome limitations in hole quality and productivity induced due to delamination, splintering and severe tool wear. Particularly, cutting loads increase caused by tool wear makes delamination and splintering even severer. Therefore, tool wear monitoring or reduction in CFRP drilling must be considered seriously. In this study, we measured thrust force, flank wear, and tool surface temperature in drilling using various tools with different sizes and materials. Consequently, it was presented the effects of tool properties on drilled hole quality, thrust force and tool surface temperature.