• Title/Summary/Keyword: Cutting depth factor

Search Result 53, Processing Time 0.019 seconds

EPB tunneling in cohesionless soils: A study on Tabriz Metro settlements

  • Rezaei, Amir H.;Shirzehhagh, Mojtaba;Golpasand, Mohammad R. Baghban
    • Geomechanics and Engineering
    • /
    • v.19 no.2
    • /
    • pp.153-165
    • /
    • 2019
  • A case study of monitoring and analysis of surface settlement induced by tunneling of Tabriz metro line 2 (TML2) is presented in this paper. The TML2 single tunnel has been excavated using earth pressure balanced TBM with a cutting-wheel diameter of 9.49 m since 2015. Presented measurements of surface settlements, were collected during the construction of western part of the project (between west depot and S02 station) where the tunnel was being excavated in sand and silt, below the water table and at an average axis depth of about 16 m. Settlement readings were back-analyzed using Gaussian formula, both in longitudinal and transversal directions, in order to estimate volume loss and settlement trough width factor. In addition to settlements, face support and tail grouting pressures were monitored, providing a comprehensive description of the EPB performance. Using the gap model, volume loss prediction was carried out. Also, COB empirical method for determination of the face pressure was employed in order to compare with field monitored data. Likewise, FE simulation was used in various sections employing the code Simulia ABAQUS, to investigate the efficiency of numerical modelling for the estimating of the tunneling induced-surface settlements under such a geotechnical condition. In this regard, the main aspects of a mechanized excavation were simulated. For the studied sections, numerical simulation is not capable of reproducing the high values of in-situ-measured surface settlements, applying Mohr-Coulomb constitutive law for soil. Based on results, for the mentioned case study, the range of estimated volume loss mostly varies from 0.2% to 0.7%, having an average value of 0.45%.

Fabrication and Characteristics of High Efficiency Silicon PERL (passivated emitter and rear locally-diffused cell) Solar Cells (PERL (passivated emitter and rear locally-diffused cell) 방식을 이용한 고효율 Si 태양전지의 제작 및 특성)

  • Kwon, Oh-Joon;Jeoung, Hun;Nam, Ki-Hong;Kim, Yeung-Woo;Bae, Seung-Chun;Park, Sung-Keoun;Kwon, Sung-Yeol;Kim, Woo-Hyun;Kim, Ki-Wan
    • Journal of Sensor Science and Technology
    • /
    • v.8 no.3
    • /
    • pp.283-290
    • /
    • 1999
  • The $n^+/p/p^+$ junction PERL solar cell of $0.1{\sim}2{\Omega}{\cdot}cm$ (100) p type silicon wafer was fabricated through the following steps; that is, wafer cutting, inverted pyramidally textured surfaces etching by KOH, phosphorus and boron diffusion, anti-reflection coating, grid formation and contact annealing. At this time, the optical characteristics of device surface and the efficiency of doping concentration for resistivity were investigated. And diffusion depth and doping concentration for n+ doping were simulated by silvaco program. Then their results were compared with measured results. Under the illumination of AM (air mass)1.5, $100\;mW/cm^2$ $I_{sc}$, $V_{oc}$, fill factor and the conversion efficiency were 43mA, 0.6 V, 0.62. and 16% respectively.

  • PDF

Factors Influencing the Social and Economic Performance of High-Tech Social Ventures (하이테크 소셜벤처의 사회적·경제적성과에 미치는 영향요인)

  • Kim, Hyeong Min;Kim, Jin Soo
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.17 no.1
    • /
    • pp.121-137
    • /
    • 2022
  • The purpose of this study is to present the necessary success factors and strategies for high-tech social ventures and stakeholders in the related ecosystem by empirically identifying factors that affect their sustainable performance. Based on prior research, the dimensions of three performance factors were presented: core technology competency, core business competency, and social mission orientation. Then, such sub-dimensions such as technology innovation orientation, R&D capability, business model, customer orientation, social network, and social mission pursuit were derived. For empirical analysis, a survey was conducted on domestic high-tech social ventures, and the significance of the hypothesis was tested through PLS-structural equation analysis of the collected 243 valid data. As a result, it was found that the technology innovation orientation was embedded as an abstract organizational and cultural characteristic in the high-tech social venture, which is a research sample, and thus did not significantly affect the dependent variable. In other words, aiming for the latest cutting-edge technology alone cannot affect performance, and it is a result of proving the need for substantial influencing factors that can strengthen it. On the other hand, the business model had a significant effect only on social performance, which is presumed to be the limitation of measurement tools developed for social enterprises, and the results of additional multi-group analysis to determine the cause also supported the basis for this estimation. Excluding the previous two performance factors, R&D competency, customer orientation, social network, and social mission pursuit were all found to have a significant positive (+) effect on social and economic performance. This study laid a foundation for related research by identifying high-tech social ventures emerging in the ecosystem of a social economy and expanded empirical research models related to the performance of existing social enterprises and social ventures. However, in the research method or process, there were limitations such as factor derivation or verification for balance of dual performance, subjective measurement method, and sample representativeness. It is expected that more in-depth follow-up studies will continue by supplementing future limitations and designing improved research models.