• 제목/요약/키워드: Cutting behavior

검색결과 290건 처리시간 0.023초

가상 공작기계의 연구 개발 - Part 2 (동절삭력 모델, 열적 거동 모델, 이송계 모델 및 통합 소프트웨어) (Development of a Virtual Machine Tool - Part 2 (Dynamic Cutting Force Model, Thermal Behavior Model, Feed Drive Model and Comprehensive Software Environment))

  • 고정훈;윤원수;강석재;조동우;안경기;윤승현
    • 한국정밀공학회지
    • /
    • 제18권11호
    • /
    • pp.80-85
    • /
    • 2001
  • In Part 2, dynamic cutting force model, thermal behavior model, and feed drive model are presented for development of a virtual machine tool. Some relevant results with brief descriptions for each model are presented to verify the proposed models. Experimental results for each model agreed well with the estimated ones. The developed models in this two-part paper are partially integrated as a comprehensive software environment.

  • PDF

Development of a Virtual Machine Tool - Part 2: Dynamic Cutting Force Model, Thermal Behavior Model, Feed Drive System Model, and Comprehensive Software Environment

  • Ko, Jeong-Hoon;Yun, Won-Soo;Kang, Seok-Jae;Cho, Dong-Woo;Ahn, Kyung-Gee;Yun, Seung-Hyun
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제4권3호
    • /
    • pp.42-47
    • /
    • 2003
  • In Part 2 of this paper, the dynamic cutting force model, thermal behavior model, and feed drive model used in the development of a virtual machine tool (VMT) are briefly described. Some results are presented to verify the proposed models. Experimental data agreed well with the predicted results fer each model. A comprehensive software environment to integrate the models into a VMT is also proposed.

머시닝센터에서 이송전류신호를 이용한 이송계의 마찰특성 규명과 이를 고려한 절삭력의 간접측정 (Firctional Behavior and Indirect Cutting Force Measurement in a Machining Center Using Feed Motor Current)

  • 김기대;최영준;오영탁;주종남
    • 한국정밀공학회지
    • /
    • 제14권4호
    • /
    • pp.78-87
    • /
    • 1997
  • In machine tools, frictional force exists between the table and the guideways, and in ballscrews. In this paper, feed motor current measured by a hall sensor is used to calculate the motor torque. Some frictional phenomena are studied in feed drive systems, such as the relationship between feedrate and frictional torque, and chip cover effects on frictional torque. Considering frictional phenomena, the relation- ship between the feed froce and the feed motor current id obtained. Feed force can be well estimated by feed motor current measurement considering frictional behavior. The relationship between the cutting force and the feed motor current is slightly different between up milling and down milling due to the effect of y direc- tional cutting force on frictional torque.

  • PDF

유리섬유 강화 플라스틱 절삭에서의 공구마멸특성 (Characteristics of tool wear in cutting of glass fiber reinforced platics (GFRP))

  • 이원평
    • 오토저널
    • /
    • 제9권5호
    • /
    • pp.49-56
    • /
    • 1987
  • This paper is a study on the effect of the cutting speed on the tool wear in turning of the glass fiber reinforced plastics. The wear behavior of cutting tool is studied by means of turning, changing the cutting speed and feed in the wide range. Moreover, the theoretical model applicable to the cutting speed of wide range is analysed. The main results obtained are as follows: The relation between the tool wear and the cutting speed is divided into three range in case of the constant cutting distance. 1) At the low cutting speed, the tool wear is independent of the cutting speed, but dependent mainly on the contact length between tool and glass fiber(lst range). 2) At the high cutting speed, the tool wear is independent of the contact length, and dependent on the cutting speed only(2nd range). The tool wear increases in proportion to the cutting speed. 3) At the higher cutting speed than the speed in the 2nd range, the tool wear is independent both of the cutting speed and the contact length(3rd range). 4) In the 3rd range, tool flank wear is constant and is observed that only the wear of cutting edge increases.

  • PDF

CHIP생성 및 절삭열 발생기구 해석을 위한 유한요소법 적용에 관한 연구 (A Study on the Applications of Finite Element Techniques to Chip Formation and Cutting Heat Generation Mechanism of Cutting Process)

  • 황준;남궁석
    • 한국정밀공학회지
    • /
    • 제12권9호
    • /
    • pp.148-155
    • /
    • 1995
  • The object of this study is to achieve a gteater understanding of meterial removal process and its mechanism. In this study, some applications of finite element techniques are applied to analyze the chip formation and cutting heat generation mechanism of metal cutting. To know the effect of cutting parameters, simulations employed some independent cutting variables change, such as constitutive deformation laws of workpiece and tool material, frictional coefficients and tool-chip contact interfaces, cutting speed, tool rake angles, depth of cut and this simulations also include large elastic-plastic defor- mation, adiabetic thermal analysis. Under a usual plane strain assumption, quasi-static, thermal-mechanical coupling analysis generate detailed informations about chip formation process and cutting heat generation mechanism Some cutting parameters are affected to cutting force, plastic deformation of chip, shear plane angle, chip thickness and tool-chip contact length and reaction force on tool, cutting temperature and thermal behavior. Several aspects of the metal cutting process predicted by the finite element analysis provide information about tool shape design and optimal cutting conditions.

  • PDF

극저온 절삭공구에 의한 가공특성의 규명과 예측 (Searching and Prediction of Cutting Characteristics Using Cryogenic Tool)

  • 오석영;정우섭;김칠수;이소영
    • 한국정밀공학회지
    • /
    • 제15권4호
    • /
    • pp.36-43
    • /
    • 1998
  • We experimented turning SCM440, called difficult-to-cut materials in general, using tungsten carbon tool(PIO) in order to elevate machinability by a new cutting method. The cutting tool designed and made to study was cooled to -17$0^{\circ}C$ in about 1 minute by liquid nitrogen. Then, we operated cryogenic cutting by cooling tool with liquid nitrogen and stuided the effect about cutting force, chip thickness, surface roughness, behavior of tool wear and cutting temperature. In addition, we investigated the possibility that sur face roughness of workpiece can be predicted analyzing cutting characteristics.

  • PDF

Evaluating Stability of a Transient Cut during Endmilling using the Dynamic Cutting Force Model

  • Seokjae Kang;Cho, Dong-Woo;Chong K. Chun
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제1권2호
    • /
    • pp.67-75
    • /
    • 2000
  • virtual computer numerical control(VCNC) arises from the concept that one can experience pseudo-real machining with a computer-numerically-controlled(CNC) machine before actually cutting an object. To achieve accurate VCNC, it is important to determine abnormal behavior, such as chatter, before cutting. Detecting chatter requires an understanding of the dynamic cutting force model. In general, the cutting process is a closed loop system the consists of structural and cutting dynamic. Machining instability, namely chatter, results from the interaction between these two dynamics. Several previous reports have predicted stability for a single path, using a simple cutting force model without run out and penetration effects. This study considers both tool run out and penetration effects, using experimental modal analysis, to obtain predictions that are more accurate. The machining stability during a corner cut, which is a typical transient cut, was assessed from an evaluation of the cutting configurations at the corner.

  • PDF

Rock cutting behavior of worn specially-shaped PDC cutter in crystalline rock

  • Liu, Weiji;Yang, Feilong;Zhu, Xiaohua;Zhang, Yipeng;Gong, Shuchun
    • Geomechanics and Engineering
    • /
    • 제31권3호
    • /
    • pp.249-263
    • /
    • 2022
  • The specially-shaped Polycrystalline Diamond Compact (PDC) cutter is widely used in drill bit design due to its advantages of high rock cutting efficiency, strong impact resistance and long service life in hard and abrasive formation drilling. A detailed understanding of rock cutting behavior of worn specially-shaped PDC cutter is essential to improve the drilling efficiency and decrease the drilling costs. In this paper, the theoretical models of two new principles (loading performance (LP) and cutting performance (CP)) are derived for evaluating the cutting process of worn specially-shaped cutter, the theoretical models consider the factors, such as cutter geometry, aggressiveness, stress state, working life, and rock cutting efficiency. Besides, the numerical model of heterogeneous granite is developed using finite element method combined with Voronoi tessellation, the LP and CP of 12 kinds of worn specially-shaped PDC (SPDC) cutters are analyzed. The results found that the mechanical specific energy (MSE) of worn cutters first increase and then decrease with increasing the cutting depth, and the MSE increase with the increase of back rake angle except for Conical cutter and Wedge-shaped cutter. From the perspective of CP, the worn PDC cutters are more suitable for the smaller cutting depths, and the back rake angle has little effect on the CP of the specially-shaped worn PDC cutters. Conical cutter, Saddle-shaped cutter and Ellipse-shaped cutter have the highest CP value, while Rhombus-shaped cutter, Convex cutter and Wedge-shaped cutter have the lowest value in selecting cutters. This research leads to an enhanced understanding of rock-breaking mechanisms of worn SPDC cutters, and provides the basis to select of specially-shaped PDC cutters for the specific target formation.

고속 절삭가공시 절삭열의 거동에 관한 연구 (A study on the behaviour of cutting heat at high speed cutting work)

  • 주호윤;이용성
    • 대한기계학회논문집A
    • /
    • 제22권2호
    • /
    • pp.476-481
    • /
    • 1998
  • It is generally known that in high speed work with more than 1000 m/min cutting speed, according to the work material phenomenon of tool wearing is increased due to the some produced neat and as a result this makes the cutting work impossible. In this study, the high speed cutting is possible because of the different cutting from the presently known fact. That is, most of generated heats influence on the quantity flowing in chip greatly. Therfore, this study aims at the behavior of cutting heat generated at high speed cutting. It makes clearly the euqntity of heat flowing in chip, work materal, tool, and inflowing ratio. The cutting mechanism varies by the changing of cutting depth, slant face and contact area through this study. And it is exammined that the influence of heat of all parts is greatly due to the change the contact length of clearance face. It is confirmed from the exp[eriment that the inflowing heat ratio influences the cutting speed greatly and the heat of clearance face can not be disregarded.

비절삭 저항상수에 따른 절삭력 예측 (Cutting Force Estimation Considering the Specific Cutting Force Constant)

  • 김종도;윤문철
    • 한국기계가공학회지
    • /
    • 제18권10호
    • /
    • pp.75-82
    • /
    • 2019
  • Few studies have been conducted regarding theoretical turning force modelling while considering cutting constant. In this paper, a new cutting force modelling technique was suggested which considers the specific cutting force coefficients for turning. The specific cutting force is the multiplication of the cutting force coefficient and uncut chip thickness. This parameter was used for experimental modelling and prediction of theoretical cutting force. These coefficients, which can be obtained by fitting measured average forces in several conditions, were used for the formulation of three theoretical cutting forces for turning. The cutting force mechanism was verified in this research and its results were compared with each of the experimental and theoretical forces. The deviation of force was incurred by a small amount in this model and the predicted force considering feed rate, nose radius, and radial depth shows a physical behavior in main force, normal force, and feeding force, respectively. Therefore, this modelling technique can be used to effectively predict three turning forces with different tool geometries considering cutting force coefficients.