• Title/Summary/Keyword: Cutting behavior

Search Result 290, Processing Time 0.026 seconds

Analysis of Cutting Characteristics in High Speed Tapping (고속 탭핑에서의 절삭 특성 해석)

  • 강지웅;김용규;이돈진;김선호;김화영;안중환
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.243-246
    • /
    • 2000
  • Productivty of tapping has been increasing through the tcchnological advances in synchronization between spindle rotation and feed motion even in the high spindle speed. However, not much researches have been conducted about tapping process because its complicate cutting mechanism. In order ta investigate the characteristics of the tapping process, this paper concentrates on the analysis of curting torque behavior during one cycle of lapping. As one completc thread is performed through the whole chamfer ercuttlng, cutting torque increases highly in chamfer cutting, but smaothly in full thread cutting Functioning of the threads guide. Cutting torque in backward cutting is smaller than in Sorwerd cutting due to only friction farce in against between the tool and workpiece. And torque behavior of a periodic Sine ripple-mark was identified during one revolution of a tap.

  • PDF

A Study on the Finite Element Analysis of Chip Formation in Machining (절삭가공시 집형성의 유한요소 해석에 관한 연구)

  • 김남용;박종권;이동주
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.973-976
    • /
    • 1997
  • Process behavior in metal cutting results from the chip formation process which is not easily observable and measurable during machining. By means of the finite element method chip formation in orthogonal metal cutting is modeled. The reciprocal interaction between mechanical and thermal loads is taken into consideration by involving the thermo-viscoplastic flow behavior of workpiece material. Local and temporal distributions of stress and temperature in the cutting zone are calculated depending on the cutting parameters. The calculated cutting forces and temperatures are compared with the experimental results obtarned from orthogonal cutting of steel AISl 4140. The model can be applied in process design for selection of appropriate tool-workpiece combination and optimum cutting conditions in term of mechanical and thermal loads.

  • PDF

Cutting Characteristics Comparison between CBN and Coated CBN Tools in Turning SCM440 (SCM440의 선삭가공시 CBN공구와 CBN코팅공구의 절삭특성 비교)

  • Bang, H.I.;Shin, H.G.;Oh, S.H.;Kim, T.Y.
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.13 no.3
    • /
    • pp.31-37
    • /
    • 2011
  • The purpose of this study is to investigate cutting characteristics and wear behavior in SCM440 steel with different cutting tools, CBN(Cubic Boron Nitride) and coated CBN. During the test coated CBN tool especially with TiAlN showed better wear resistance behavior than orginal CBN tools. In the interrupted cutting condition, axial groove affected tool surface with impact force during the turning operation. For advantageous turning parameter in the interrupted process it is recommendable that lower speed. Also surface roughness showed better behavior in the coated CBN tool conditions than normal CBN conditions. Mainly this is caused by reduced friction between material and tool surface with coated layer.

난삭재의 저온절삭에서의 절삭특성에 관한 연구

  • 김칠수;오선세;임영호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1992.04a
    • /
    • pp.89-93
    • /
    • 1992
  • We experimented cutting characteristics-cutting force, behavior of chip, surface roughness-under low temperature, which generated by liquid nitrogen(77K). The results obtained are as follows; 1) The workpice is became to-195 .deg. C in 5, minutes, and in cooled cutting, cutting force bycooled workpices is stronger than normal temperature condition. Chip thickness is decreasing comparative toN.C and shear angle in shear plane is in creasing. 2) Chip formation becomes long or short tubular chips in turning SXM440, SNCM21 steel, when cutting speed is low and cutting temperatre is cooled condition, but in the STS304 steel the variation of c formations isn't known to. 3) In C.C, surface roughness of workpices is better than N.C and found to make more the crat wearthan N.C 4) It is possible to detect the behavior of chip by monitoring the maximum amplitude of gai value of cutting force.

Neural network for Prediction of the Cutting Characteristies in Cryogenic Cutting (극저온 절삭에서 절삭특성예측을 위한 신경회로망의 적용)

  • 김칠수;오석영;임영호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.32-37
    • /
    • 1994
  • We experimented on cutting characteristics - cutting force, behavior of cutting temperature, surface roughness, behavior of chips-under low temperature,which generated by liquid nitrogen(77K). The workpieces were freezed to -195 .deg. C and liquid nitrogen was also sprinkled on cutting area in order to increase the efficiency of machining in low temperature. The workpiece was became to -195 .deg. C in 5 minutes. In cooled condition(CC) surface roughness of workpiece was better than normal condition(NC). In addition, we investigated the possibility that surface roughness of workpiece and shear angle can be predicted analyzing cutting condititions by the trained neural network.

  • PDF

A Study on the Cutting Characteristics of SCM440, SNCM21, STS 304 in Cryogenic Cutting(1st Report) (난삭재의 극저온절삭에서의 절삭 특성에 관한 연구)

  • Kim, Chill-Su;Oh, Sun-Sae;Lim, Young-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.1
    • /
    • pp.44-53
    • /
    • 1994
  • We experimented on cutting characteristics-cutting force, behavior of cutting temprature, surface foughness, behavior of chips-under low tempdeature, which generated by liquid nitrogen (77K). The workpieces were freezed to -195 .deg. C and liquid nitrogen was also sprinkled on cutting area in order to increase the efficiency of machining in low temperature. The workpiece was became to -195 .deg. C in 5 minutes, and cutting temperature in CC was lower about 170 .deg. C than NC. The cutting force trended to increase slighty in cooled cutting, but chip thickness was decreased, shear angle was however increased. The form of chips was in good conditions of long or short tubular chips in CC. In CC surface roughness of workpiece was better than NC. In NC surface hardness of chips trended to increase according to increasing of cutting speed, but in CC it trended to decrease. The power spectrum of vertical cutting force trended to increase according to increasing of feed, and in CC it was higher than NC.

  • PDF

A Study on Cutting Characteristic in Turning Ductile Cast Iron(FCD500) (구상화 흑연주철(FCD500)의 가공성에 관한 연구)

  • Oh, Sung-Hoon;Kim, Ho-Geon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.4
    • /
    • pp.67-71
    • /
    • 2012
  • The purpose of this study is to investigate cutting characteristics and wear behavior in FCD500 ductile cast iron turning with different cutting tools, tungsten-carbide and CBN. Mechanical property, cutting characteristics and the application to the real industrial area is the final purpose. FDC500 ductile cast iron is now widely used in the various commercial vehicle parts for increased machine abilities which accrue more tensile strength with lower hardness. Several studies have been fulfilled for the material and heat-treatment area, but few with the cutting characteristics and wear behavior in the turning area.

Effects of cutting condition on surface roughness in the spiral up milling of aluminum alloy (알루미늄 합금의 스파이럴 상향가공 시 절삭조건이 표면거칠기에 미치는 영향)

  • Chun, Se-Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.4
    • /
    • pp.83-90
    • /
    • 2014
  • The spiral up milling of an aluminum alloy was performed in this study. In accordance with the cutting condition, the surface roughness behavior and significance of the research with regard to specific factors were analyzed. The cutting speed, feed, and depth of the cut were found to be statistically significant. A higher cutting speed improved the surface roughness. On the other hand, as the feed and depth of the cut increase, the surface roughness decreases. An interaction effect between the feed and depth of the cut was detected. According to the surface roughness in relation to the cutting conditions, the model showed non-linear behavior.

Verification on Chaotic Behavior of Cutting Force in Metal Cutting (절삭가공시 절삭력 신호의 카오스적거동에 관한 규명)

  • 구세진
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1996.10a
    • /
    • pp.96-100
    • /
    • 1996
  • So far the analysis and modeling of cutting process is studied commonly assumed as being linear stochastic or chaotic without experimental verification. So we verified force signals of cutting process(ball end-milling) is low-dimensional chaos by calculating Lyapunov Exponents. reconstructing attractor using time delay coordinates and calcula-ting it's fractal dimension.

  • PDF

The Effect of Oxygen Introduction on Oxidation Resistance and Cutting Performance of Silicon Nitride Ceramics

  • Nagano, Mituyoshi;Sano, Hideaki;Sakaguchi, Shigeya;Zheng, Guo Bin;Uchiyama, Yasuo
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.857-858
    • /
    • 2006
  • In order to clarify the wear resistance as cutting tools, the effect of oxygen addition on oxidation behavior of the ${\beta}-Si_3N_4$ ceramics with 5 mass% $Y_2O_3$ and 2 or 4 mass% $Al_2O_3$ was investigated by performing oxidation tests in air at $1300^{\circ}$ to $1400^{\circ}C$ and cutting performance tests. From test results, we could conclude that the mechanical properties of ${\beta}-Si_3N_4$ ceramics depending on oxygen introduction are much effective on cutting performance improvements of ${\beta}-Si_3N_4$ ceramics.

  • PDF