• 제목/요약/키워드: Cutting Process Dynamics

검색결과 73건 처리시간 0.023초

슬라이딩 모드 제어기를 응용한 선삭공정 절삭력 제어 (Cutting Force Regulation in Turning Using Sliding Mode Control)

  • 박영빈;김종원
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1996년도 추계학술대회 논문집
    • /
    • pp.605-609
    • /
    • 1996
  • Continuous sliding mode control is applied to turning process for cutting force regulation. The highest feedrate compatible with the allowable cutting force is applied in rough cutting process such that maximum productivity is ensured and tool breakage is avoided. The programmed feedrate is overridden after the control algorithm is carried out. However, most CNC lathe manufacturers offer limited number of data bits far feedrate override, thus resulting in nonlinear behavior of the machine tools. Such nonlinearity brings “quantized” effect, and the optimal faedrate is rounded off before being fed into the CNC system. To compensate for this problem, continuous sliding mode control is applied. Conventional switching control law at a sliding surface is replaced by a smooth control interpolation in a selected boundary layer to avoid the excitation of high-frequency dynamics. Simulation results are presented in comparison with those obtained by applying adaptive control.

  • PDF

Design of an Algorithm to Simulate Surface Roughness in a Turning for an Integrated Virtual Machine Tool

  • Jang, Dong-Young
    • 한국시뮬레이션학회:학술대회논문집
    • /
    • 한국시뮬레이션학회 1998년도 추계학술대회 및 정기총회
    • /
    • pp.204-208
    • /
    • 1998
  • The fundamental issues to evaluate machine tool's performance through simulation pertain to the physical models of the machine tool itself and of process while the practical problems are related to the development of the modular software structure. It allows the composition of arbitrary machine/process models along with the development of programs to evaluate each state of machining process. Surface roughness is one of the fundamental factors to evaluate machining process and performance of machine tool, but it is not easy to evaluate surface roughness due to its tribological complexity. This paper presents an algorithm to calculate surface roughness considering cutting geometry, cutting parameters, and contact dynamics of cutting between tool and workpiece as well as tool wear in turning process. The designed virtual machining system can be used to evaluate the surface integrity of a turned surface during the design and process planning phase for the design for manufacturability analysis of the concurrent engineering.

  • PDF

통합절삭 시뮬레이션 시스템용 선삭표면조도 시뮬레이션 알고리즘의 설계 (Design of an Algorithm to Simulate Surface Roughness in a Turning for an Integrated Machining Simulation System)

  • 장동영
    • 한국시뮬레이션학회논문지
    • /
    • 제8권1호
    • /
    • pp.19-33
    • /
    • 1999
  • The fundamental issues to evaluate machine tools performance through simulation pertain to the physical models of the machine tool itself and of process while the practical problems are related to the development of the modular software structure. It allows the composition of arbitrary machine/process models along with the development of programs to evaluate each state of machining process. Surface roughness is one of the fundamental factors to evaluate machining process and performance of machine tool, but it is not easy to evaluate surface roughness due to its tribological complexity. This paper presents an algorithm to calculate surface roughness considering cutting geometry, cutting parameters, and contact dynamics of cutting between tool and workpiece as well as tool wear in turning process. This proposed algorithm could be used in the designed virtual machining system. The system can be used to evaluate the surface integrity of a turned surface during the design and process planning phase for the design for manufacturability analysis of the concurrent engineering.

  • PDF

엔드밀가공시 복합계측 신호에 의한 공구 마멸의 카오스적 해석 (Chaotic Analysis of Multi-Sensor Signal in End-Milling Process)

  • 구세진;이기용;강명창;김정석
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 춘계학술대회 논문집
    • /
    • pp.817-821
    • /
    • 1997
  • Ever since the nonlinearity of machine tool dynamics was established, researchers attempted to make use of this fact to devise better monitoring, diagnostics and system, which were hitherto based on linear models. Theory of chaos, which explains many nonlinear phenomena comes handy for furthering the analysis using nonlinear model. In this study, measuring system will be constructed using multi-sensor (Tool Dynamometer, Acoustic Emission) in end millingprocess. Then, it will be verified that cutting force is low-dimensional deterministic chaos calculating Lyapunov exponents, Fractal dimension, Embedding dimension. Aen it will be investigated that the relations between characteristic parameter caculated form sensor signal and tool wear.

  • PDF

채터 안정성 해석을 이용한 자기베어링 밀링 주축의 제어기 설계 연구 (Study on Controller Design for an Active Magnetic Bearing Milling Spindle Using Chatter Stability Analysis)

  • 경진호;박종권;노승국
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2002년도 추계학술대회 논문집
    • /
    • pp.440-445
    • /
    • 2002
  • The characteristic equation for regenerative chatter loop including a delay element replaced by a rational function is presented by a linear differential-difference equation, accounting for the dynamics of the AMB controllers, the uncut chip thickness equation and the cutting process as well as the rigid spindle dynamics itself. The chatter stability analysis of a rigid milling spindle suspended by 5-axes active magnetic bearings(AMBs) is also performed to investigate the influences of the damping and stiffness coefficients of AMBs on the chatter free cutting conditions, as they are allowed to vary within the stable region formed by the AMB control gains. Several cutting tests varying the derivative gains of the AMB were performed to investigate the regenerative chatter vibrations, and it was concluded that the theoretical analysis results are in good consistency with the test results.

  • PDF

Evaluating Stability of a Transient Cut during Endmilling using the Dynamic Cutting Force Model

  • Seokjae Kang;Cho, Dong-Woo;Chong K. Chun
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제1권2호
    • /
    • pp.67-75
    • /
    • 2000
  • virtual computer numerical control(VCNC) arises from the concept that one can experience pseudo-real machining with a computer-numerically-controlled(CNC) machine before actually cutting an object. To achieve accurate VCNC, it is important to determine abnormal behavior, such as chatter, before cutting. Detecting chatter requires an understanding of the dynamic cutting force model. In general, the cutting process is a closed loop system the consists of structural and cutting dynamic. Machining instability, namely chatter, results from the interaction between these two dynamics. Several previous reports have predicted stability for a single path, using a simple cutting force model without run out and penetration effects. This study considers both tool run out and penetration effects, using experimental modal analysis, to obtain predictions that are more accurate. The machining stability during a corner cut, which is a typical transient cut, was assessed from an evaluation of the cutting configurations at the corner.

  • PDF

엔드밀가공시 복합계측 신호를 이용한 공구 마멸의 카오스적 해석 (Chaotic analysis of tool wear using multi-sensor signal in end-milling process)

  • Kim, J.S.;Kang, M.C.;Ku, S.J.
    • 한국정밀공학회지
    • /
    • 제14권11호
    • /
    • pp.93-101
    • /
    • 1997
  • Ever since the nonlinearity of machine tool dynamics was established, researchers attempted to make use of this fact to devise better monitoring, diagnostics and control system, which were hitherto based on linear models. Theory of chaos which explains many nonlinear phenomena comes handy for furthering the analysis using nonlinear model. In this study, measuring system will be constructed using multi-sensor (Tool Dynamometer, Acoustic Emission) in end milling process. Then, it will be verified that cutting force is low-dimensional chaos by calculating Lyapunov exponents. Fractal dimension, embedding dimension. And it will be investigated that the relation between characteristic parameter calculated from sensor signal and tool wear.

  • PDF

엔드밀을 이용한 기계가공에서 표면거칠기 제어를 위한 퍼지 모델 (Fuzzy Model for controlling of Surface Roughness using End-Mill in Machining)

  • 김흥배;이우영
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2001년도 추계학술대회 학술발표 논문집
    • /
    • pp.69-73
    • /
    • 2001
  • The dynamic characteristics of turning processes are complex, non-linear and time-varying. Consequently, the conventional techniques based on crisp mathematical model may not guarantee surface roughness regulation. This paper presents a fuzzy controller which can regulate surface roughness in milling process using end-mill under varying cutting condition. The fuzzy control rules are established from operator experience and expert knowledge about the process dynamics. regulation which increases productivity and tool life is achieved by adjusting feed-rate according to the variation of cutting conditions. The performance of the proposed controller is evaluated by cutting experiments in the converted CNC milling machine. The result of experiments show that the proposed fuzzy controller has a good surface roughness regulation capability in spite of the variation of cutting conditions.

  • PDF

인장실험을 통한 엔드밀링 작업에서의 절삭력 예측에 관한 연구 (A Study on the Prediction of End Milling Cutting Force by Tensile Test)

  • 신근하
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1999년도 추계학술대회 논문집 - 한국공작기계학회
    • /
    • pp.257-262
    • /
    • 1999
  • On End Milling Process predict the cutting force is important. Dynamics the shear stress is the main parameter influencing the energy requirement in machining. It is well known that a nonzero force is obtained when cutting forces measured at different feed rates but otherwise constant cutting conditions are extrapolated to zero feed rate. In this paper, the cutting force measured in end-milling is compared with the simulated force models. The result show that stress measured in cutting is consistent with that stresses predicted.

  • PDF

Numerical Study of the Dynamics Connecting a Solar Flare and a Coronal Mass Ejection

  • Inoue, Satoshi;Kang, Jihye;Choe, Gwangson
    • 천문학회보
    • /
    • 제39권2호
    • /
    • pp.97.1-97.1
    • /
    • 2014
  • We clarify the dynamics connecting a solar flare and a coronal mass ejection (CME) based on the results of a magnetohydrodynamic (MHD) simulation starting from a nonlinear force-free field (NLFFF) in Inoue et al. 2014. In previous studies, many authors proposed numerous candidates for triggering processes of a solar flare and the associated CME. Among them, the tether-cutting reconnection or the torus instability has been supported by recent simulations and observations. On the other hand, our MHD simulation in accordance with more realistic situations show that highly twisted field lines are first produced through a tether-cutting reconnection between the twisted field lines in the NLFFF, and then the newly formed, strongly twisted field erupts away from the solar surface because of a loss of equilibrium. This dynamics corresponds to the onset of a solar flare. Furthermore we have found that the strongly twisted erupting field reconnect with the weakly twisted ambient field during the eruption, creating a large flux tube, and then it rises over a critical height of the torus instability to trigger a CME. From these results, we conclude that the coupled process of tether-cutting reconnection and torus instability is important in the flare-CME relationship.

  • PDF