• 제목/요약/키워드: Cutting Process

검색결과 2,282건 처리시간 0.024초

고출력 연속파형 Nd:YAG 레이저를 이용한 CSP 1N 냉연강판 절단시 절단공정변수의 절단폭에 미치는 영향 (Influence of process parameters on the kerfwidth for the case of laser cutting of CSP 1N sheet using high power CW Nd:YAG laser)

  • 안동규;김민수;이상훈;박형준;유영태
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.910-915
    • /
    • 2004
  • The objective of this study is to investigate the influence of process parameters, such as power of laser, travel speed of laser and material thickness, on the practical cutting region and the kerfwidth for the case of cutting of CSP 1N sheet using high power Nd:YAG laser with continuous wave(CW). In order to find the practical cutting region and the relationship between process parameters on the kerfwidth, several laser cutting experiments are carried out. The effective heat input is introduced to consider the influence of power and travel speed of laser on the kerfwidth together. From the results of experiments, the allowable cutting region and the relationship between the effective heat input and kerfwidth for the case of cutting of CSP 1N sheet using high power CW Nd:YAG laser have been obtained to improve the dimensional accuracy of the cut area.

  • PDF

마이크로 엔드밀링 공정의 절삭계수 모델링 및 최적 공정설계 (Modeling of Cutting Parameters and Optimal Process Design in Micro End-milling Processes)

  • 이광조;정성종
    • 한국생산제조학회지
    • /
    • 제18권3호
    • /
    • pp.261-269
    • /
    • 2009
  • Micro end-milling process is applied to fabricate precision mechanical parts cost-effectively. It is a complex and time-consuming job to select optimal process conditions with high productivity and quality. To improve the productivity and quality of precision mechanical parts, micro end-mill wear and cutting force characteristics should be studied carefully. In this paper, high speed machining experiments are studied to construct the optimum process design as well as the mathematical modeling of tool wear and cutting force related to cutting parameters in micro ball end-milling processes. Cutting force and wear characteristics under various cutting conditions are investigated through the condition monitoring system and the design of experiment. In order to construct the cutting database, mathematical models for the flank wear and cutting force gradient are derived from the response surface method. Optimal milling conditions are extracted from the developed experimental models.

  • PDF

로드셀을 이용한 밀링 가공시의 절삭력 측정시스템 (Cutting Force Measuring System Using the Load Cell for a Milling Process)

  • 강은구;박성준;이상조;권혁동
    • 한국정밀공학회지
    • /
    • 제18권6호
    • /
    • pp.133-140
    • /
    • 2001
  • This paper suggests another system for a cutting force measuring tool in a milling process. Generally, tool dynamometer is taken into account for the most appropriate cutting force measuring tool in the analysis of cutting mechanism. However, high price and limited space make it difficult to be in-situ system for controllable milling process. Although an alternative method using AC current of servo-motor has been suggested, it is unsuitable for cutting force control because of small upper frequency limit and noise. The cutting force measuring system is composed of two load cells placed between the moving table bracket and the nut flange part of ballscrew. It has many advantages such as low cost and wide range measurement than tool dynamometer because of the built-in moving table and the low cost load cell. The static and dynamic model of the measuring system using imbeded load cell is introduced. Various Experiments are carried out to validate both models. By comparing the cutting forces from a series of end milling experiments on the tool dynamometer and the system developed in this paper, the accuracy of the cutting force measuring system is verified. Upper frequency limit is measured by the experiment of dynamic characteristics.

  • PDF

이종 금속의 선삭 가공 특성에 관한 연구 (Turning Characteristics of differential materials)

    • 한국생산제조학회지
    • /
    • 제7권3호
    • /
    • pp.43-50
    • /
    • 1998
  • In the use of CNC machine tool, the unmanned production system has been growing in the manufacturing field. Thus, it is necessary to monitor adequate tool fracture during the cutting process efficiently. This experimental study is intended to investigate the development of flank wear in sysnchronous turning of differential materials(Aℓ/GC) which is used in industrial application and it is acknowledged as a machine to difficult material. In cutting process change of velocity, change of feed, and change of depth of cut were investigated on the effect of flank wear, and slenderness ratio is also investigated. The conclusions of this paper are summarized as follows; 1.Under the high cutting speed condition, the flank wear is affected by the feed and depth of cut. but the influence of feed on the flank wear is larger than the depth of cut and that is reduced when the velocity is low. 2.Under the high cutting speed, as the smaller slenderness ratio is, the shorter tool life is under the lower cutting speed, the effect of slenderness ratio on the flank wear is low. 3.Using the characteristics of cutting force, the flank wear of a tool can be detected 4. Investigating the development of flank wear, there are almost no differences between the characteristics of cutting force and feed force. Finally, these data from the differntial materials cutting process will be used in the basic field of precision and economic cutting process.

  • PDF

고속 탭핑에서의 절삭 특성 해석 (Analysis of Cutting Characteristics in High Speed Tapping)

  • 강지웅;김용규;이돈진;김선호;김화영;안중환
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 추계학술대회 논문집
    • /
    • pp.243-246
    • /
    • 2000
  • Productivty of tapping has been increasing through the tcchnological advances in synchronization between spindle rotation and feed motion even in the high spindle speed. However, not much researches have been conducted about tapping process because its complicate cutting mechanism. In order ta investigate the characteristics of the tapping process, this paper concentrates on the analysis of curting torque behavior during one cycle of lapping. As one completc thread is performed through the whole chamfer ercuttlng, cutting torque increases highly in chamfer cutting, but smaothly in full thread cutting Functioning of the threads guide. Cutting torque in backward cutting is smaller than in Sorwerd cutting due to only friction farce in against between the tool and workpiece. And torque behavior of a periodic Sine ripple-mark was identified during one revolution of a tap.

  • PDF

밀링가공에서의 주축 변위 측정을 통한 절삭력 예측 (CUTTING FORCE PREDICTION USING SPINDLE DISPLACEMENT IN MILLING)

  • 장훈근;장동영;한동철
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2004년도 추계학술대회 논문집
    • /
    • pp.485-489
    • /
    • 2004
  • Cutting force is important to understand cutting process in milling. To measure cutting force, tool dynamometer is widely used but it is hard to apply in workshop condition. Cutting force measurement which doesn't affect cutting process is needed. Using relations between cutting force and spindle displacement, cutting force can be predicted. Cylindrical capacitive sensor was used to measure spindle displacement during cutting. And signals from tool dynamometer collected to compare with spindle displacement. The result shows spindle displacement has a linear relation with cutting force. Using this result, a simple method to predict cutting force could be applied at workshop condition.

  • PDF

티타늄 가공의 절삭조건에 따른 가공특성에 관한 연구 (A Study on Characteristics of Cutting by Cutting Conditions in Titanium Machining)

  • 김기하
    • 한국기계가공학회지
    • /
    • 제12권1호
    • /
    • pp.84-89
    • /
    • 2013
  • Titanium used in industry has been widely applied for aerospace engine, structures and spacecraft exterior, etc. because the titanium is higher in strength compared to the steel and light in weight compared to the steel. This study is to investigate the effect of cutting depth and cutting time on the spindle speed and feed rate of vertical machining center as a parameter to find the rough cutting time and cutting depth in the medium speed cutting machining of the titanium alloy. It is found that the cutting machining heat are increased as the cutting depth, feed rate, cutting time and spindle speed are raised.

절삭유 공급방식에 따른 절삭유 분산특성에 관한 연구 (The Characteristics of Cutting Fluid Atomization in According to Cutting Fluid Application Method)

  • 황준;정의식
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 추계학술대회 논문집
    • /
    • pp.858-861
    • /
    • 2000
  • This paper presents the characteristics of cutting fluid atomization due to its application method. In this study three different application methods; nozzle, jet, mist type is adopted for evaluating the cutting fluid's effect in terms of machinability and environmental consciousness. Cutting fluids are widely used to cool and lubricate the cutting zone in machining process. Cutting fluids mist via atomization in spin-off process can be affected to health risk. To satisfy the increasing concern of health and environment problem and keep the machinability or productivity it is necessary to establish the resonable strategy of cutting fluid usage and optimal control. Tool wear and cutting fluid diffusion rate in the air were measured as machinability index and environmental index in a few turing operation. Through this basic approach it can be also provide the optimization of cutting process and improvement of machine tool design in achieving environmentally conscious machining.

  • PDF

절삭가공시 절삭력 신호의 카오스적거동에 관한 규명 (Verification on Chaotic Behavior of Cutting Force in Metal Cutting)

  • 구세진
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1996년도 추계학술대회 논문
    • /
    • pp.96-100
    • /
    • 1996
  • So far the analysis and modeling of cutting process is studied commonly assumed as being linear stochastic or chaotic without experimental verification. So we verified force signals of cutting process(ball end-milling) is low-dimensional chaos by calculating Lyapunov Exponents. reconstructing attractor using time delay coordinates and calcula-ting it's fractal dimension.

  • PDF

유한요소법을 이용한 절삭가공 Burr 예측과 생성특성 연구 (Burr Prediction via Finite Element Method and Burr Formation Characteristics in Metal Cutting Process)

  • 황준;황덕철;우창기;양계준
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.1000-1003
    • /
    • 2001
  • This paper presents the numerical analysis and experimental verification to know the metal cutting burr formation mechanism in face milling operation. Finite element method are applied to predict the 2-D burr formation process prediction. Face milling process are adjusted to analyze the characteristics of burr shapes according to various cutting conditions. The cutting parameters were investigated with cutting speed, feed rate, depth of cut. Through the experiments various burr types are classified according to its shape and properties.

  • PDF