• 제목/요약/키워드: Cutting Problem

검색결과 426건 처리시간 0.029초

효율적인 2단계 길로틴 평면절단 방법 (An efficient method on two-phased guillotine cutting stock)

  • 김상열;박순달
    • 산업공학
    • /
    • 제8권2호
    • /
    • pp.151-159
    • /
    • 1995
  • Two-dimensional cutting stock problem is to find a waste-minimizing method of cutting a single rectangular plane into a number of smaller pieces of known dimensions. In practice, besides wastes, setup cost taken during adjusting is of an important concern. We suggest 2-phased guillotine cutting method as a solution to the problem which minimize wastes and setup costs. Also, in order to reduce the computing time we apply techniques of discretization, cutoff, median. Experimental results show good performance of our algorithm.

  • PDF

레이저 토치의 절단경로 생성을 위한 혼합형 유전알고리즘 (A Hybrid Genetic Algorithm for Generating Cutting Paths of a Laser Torch)

  • 이문규;권기범
    • 제어로봇시스템학회논문지
    • /
    • 제8권12호
    • /
    • pp.1048-1055
    • /
    • 2002
  • The problem of generating torch paths for 2D laser cutting of a stock plate nested with a set of free-formed parts is investigated. The objective is to minimize the total length of the torch path starting from a blown depot, then visiting all the given Parts, and retuning back to the depot. A torch Path consists of the depot and Piercing Points each of which is to be specified for cutting a part. The torch path optimization problem is shown to be formulated as an extended version of the standard travelling salesman problem To solve the problem, a hybrid genetic algorithm is proposed. In order to improve the speed of evolution convergence, the algorithm employs a genetic algorithm for global search and a combination of an optimization technique and a genetic algorithm for local optimization. Traditional genetic operators developed for continuous optimization problems are used to effectively deal with the continuous nature of piercing point positions. Computational results are provided to illustrate the validity of the proposed algorithm.

무제한 2차원 절단문제에 대해 개선된 최적-우선 분지한계 해법 (An Improved Best-First Branch and Bound Algorithm for Unconstrained Two-Dimensional Cutting Problems)

  • 윤기섭;방성규;강맹규
    • 한국경영과학회지
    • /
    • 제30권4호
    • /
    • pp.61-70
    • /
    • 2005
  • In this Paper, we develop an improved branch and bound algorithm for the (un)weighted unconstrained two-dimensional cutting problem. In the proposed algorithm, we improve the branching strategies of the existing exact algorithm and reduce the size of problem by removing the dominated pieces from the problem. We apply the newly Proposed definition of dominated cutting pattern and it can reduce the number of nodes that must be searched during the algorithm procedure. The efficiency of the proposed algorithm is presented through comparison with the exact algorithm known as the most efficient.

Studies on the Development of a Tea Harvesting Machine

  • Okada, Yoshiichi;Gejima, Yshiinori
    • 한국농업기계학회:학술대회논문집
    • /
    • 한국농업기계학회 1996년도 International Conference on Agricultural Machinery Engineering Proceedings
    • /
    • pp.478-487
    • /
    • 1996
  • A " plucking rolls device" was developed in this study to improve the quality of harvested tea leaves. In this report, the outline of the system and the results of performance experiments in our laboratory are discussed. Tow kinds of performance experiments were carried out. The first experiment checked harvesting accuracy by using a plucking unit that was developed for harvesting machine installation. The second experiment was a harvesting experiment which utilized a fron bar in order to prevent cutting of the tea buds which had been a problem in precious experiments . As a results of the first experiments , it was confirmed that selective harvesting obtained high quality tea leaves. but a cutting problem that, when the harvesting seed was faster than the working speed, which was non-selective harvesting , was also seen. In the second experiment, the cutting rate decreased to a maximum of 50% level, when tea buds most bent ahead by the front bar. The effect was seen that cutt ng problem was alleviated from this.

  • PDF

3차원 비길로틴 자재절단문제의 라그랑지안 완화 해법 (A Lagrangean Relaxation Method of Three-Dimensional Nonguillotine Cutting-Stock Problem)

  • 김상열;박순달
    • 대한산업공학회지
    • /
    • 제22권4호
    • /
    • pp.741-751
    • /
    • 1996
  • The three dimensional cutting-stock problem is to maximize the total value of pieces which are smaller cubics-cut from a original cubic stock. This paper suggests a method to maximize the total value of different size cut pieces using the orthogonal non-guillotine cut technique. We first formulated a zero-one integer programming, then developed a Lagrangeon relaxation method far the problem. The solutions were given by using a brunch-end-bound technique associates with Lagrangean relaxation, which guarantees an optimal solution.

  • PDF

강판 절단 생산에서의 CSP (A Cutting Stock Problem in the Sheet Steel Cutting Production)

  • 오세호
    • 산업경영시스템학회지
    • /
    • 제18권35호
    • /
    • pp.47-52
    • /
    • 1995
  • The aim of this paper is to suggest the cutting stock problems which are two-dimensional in form, but can be treated as the optimization methods for one-dimensional cutting stock problem by exploiting the length requirement of the products. The solution method consists of two stages. The first calculates the number of roll pieces of each size. Next, 1-dimensional cutting stock model is set up. One heuristic method to calculate the number of each roll is suggested. The trim loss minization criteria are used to design the objective function. This model can be solved by the conventional cutting stock procedures based on enumerating the possible cutting patterns.

  • PDF

Optimal Two-Section Layouts for the Two-Dimensional Cutting Problem

  • Ji, Jun;Huang, Dun-hua;Xing, Fei-fei;Cui, Yao-dong
    • Journal of Information Processing Systems
    • /
    • 제17권2호
    • /
    • pp.271-283
    • /
    • 2021
  • When generating layout schemes, both the material usage and practicality of the cutting process should be considered. This paper presents a two-section algorithm for generating guillotine-cutting schemes of rectangular blanks. It simplifies the cutting process by allowing only one size of blanks to appear in any rectangular block. The algorithm uses an implicit enumeration and a linear programming optimal cutting scheme to maximize the material usage. The algorithm was tested on some benchmark problems in the literature, and compared with the three types of layout scheme algorithm. The experimental results show that the algorithm is effective both in computation time and in material usage.

Nd:YAG UV 레이저를 이용한 연성회로 다층기판 절단특성에 대한 연구 (An analysis of Cutting Characteristic of Multilayer FPCB using Nd:YAG UV Laser System)

  • 최경진;이용현
    • 한국정밀공학회지
    • /
    • 제27권3호
    • /
    • pp.9-17
    • /
    • 2010
  • The FPCB is used for electronic products such as LCD display. The process of manufacturing FPCB includes a cutting process, in which each single FPCB is cut and separated from the panel where a series of FPCBs are arrayed. The most-widely used cutting method is the mechanical punching, which has the problem of creating burrs and cracks. In this paper, the cutting characteristics of the FPCB have been experimented using Nd:YAG DPSS UV laser as a way of solving this problem. To maximize the industrial application of this laser cutting process, test samples of the multilayered FPCB have been chosen as it is actually needed in industry. The cutting area of the FPCB has four different types of layer structure. First, to cut the test sample, the threshold laser cut-off fluence has been found. Various combinations of laser and process parameters have been made to supply the acquired laser cut-off fluence. The cutting characteristics in terms of the variation of the parameters are analyzed. The laser and process parameters are optimized, in order to maximize the cutting speed and to reach the best quality of the cutting area. The laser system for the process automation has been also developed.

절삭력을 이용한 칩형태의 예측에 관한 연구 (A Study on the Prediction of the Form of Chips using Cutting Forces)

  • 이상준;최만성;송지복
    • 한국정밀공학회지
    • /
    • 제5권1호
    • /
    • pp.40-49
    • /
    • 1988
  • The chip control problem is one of the important subjects to be studied in the metal cutting process. Especially, an important practical problem concerns the form of chips pro- duced in machining since this has important implications relative to : 1. Personal safety. 2. Possible damage to equipment and product. 3. Handling and disposal of swarf after machining. 4. Cutting forces, temperatures, and tool life. However, a dependable way to predict the form of chips in a wide range of cutting conditions has not been established satisfactorily. In this paper, the relationship between the form of chips and the ratios of cutting forces were studied experimentally. According to what the experiments have been carried out in the turning process the main results can be summarized as follows : 1. By use of the multiple linear regression model, emperical formulas which are suitable to wide ranges of cutting conditions with accuracy were obtained satisfactorily. 2. The correlations between the form of chips based upon the classification by Henriksen and the ratios of cutting forces, namely (feeding force/thrust force), (principal force/feeding force) were determined. 3. Using above results, the algorithms which predict the form of chips were constituted. With these algorithms, the form of chips in a wide range of cutting of cutting conditions can be predicted.

  • PDF