• Title/Summary/Keyword: Cutting Power

Search Result 430, Processing Time 0.033 seconds

Cutting Force Estimation Using Spindle Motor Power (주축 모터 동력을 이용한 절삭력 예측)

  • 최영준;김기대;주종남
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.1088-1094
    • /
    • 1997
  • An indirect cutting torque and cutting force estimation method is presented. This method uses a time-domain model between the spindle motor power, which calculated form measured spindle motor current and voltage. Spindle motor power is linear with cutting torque in this model. The cutting force is proportional to the cutting torque. Using trial cut, parameters are determined. Static sensitivity is suitable for various cutting conditions. The presented method is verified under several cutting tests on the CNC horizontal machining center.

  • PDF

Measurement and verification of pipe cutting power using Labview software (Labview 소프트웨어를 활용한 파이프 절단 파워 측정 및 검증)

  • Jang, Tae-ho;Kim, Youngshik;Jang, Tae-soo;Ryu, Bong-Jo
    • Journal of Digital Contents Society
    • /
    • v.18 no.7
    • /
    • pp.1387-1391
    • /
    • 2017
  • Cutting power estimation can be used to select appropriate actuators in the design process of machine tools. Therefore, accurate estimation of cutting power is an important part of the design process. In this study, pipe cutting power is first calculated theoretically using the slotting cutting power equation and then verified experimentally. In this case, a pipe cutting machine is used to cut two pipes made of different materials. Power consumptions in the motor during pipe cutting are measured by using the embedded software, Labview, and NI hardware. The slotting cutting power equation can thus be confirmed easily comparing theoretically calculated cutting powers with experimentally measured cutting powers. The pipe materials used in this study are SUS304 and AL6N01. The specific cutting power of AL6N01 material is proposed through our cutting experiment. As a result, this cutting power can be used to design machining tools for AL6N01 material.

Influence of process parameters on the kerfwidth for the case of laser cutting of CPS 1N sheet using high power CW Nd:YAG laser (고출력 연속파형 Nd:YAG 레이저를 이용한 CSP 1N 냉연강판 절단시 공정변수의 절단폭에 미치는 영향)

  • Kim Min-Su;Lee Sang-Hoon;Park Hyung-Jun;Yoo Young-Tae;Ahn Dong-Gyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.7 s.172
    • /
    • pp.19-26
    • /
    • 2005
  • The objective of this study is to investigate the influence of process parameters, such as power of laser, cutting speed of laser and material thickness, on the practical cutting region and the kerfwidth fer the case of cutting of CSP IN sheet using high power Nd:YAC laser in continuous wave(CW) mode. In order to obtain the practical cutting region and the relationship between process parameters on the kerfwidth, several laser cutting experiments are carried out. The effective heat input is introduced to consider the influence of power and cutting speed of laser on the kerfwidth together. From the results of experiments, the allowable cutting region and the relationship between the effective heat input and kerfwidth fur the case of cutting of CSP 1N sheet using high power CW Nd:YAG laser have been obtained to improve the dimensionalaccuracyofthecutarea.

Influence of process parameters on the kerfwidth for the case of laser cutting of CSP 1N sheet using high power CW Nd:YAG laser (고출력 연속파형 Nd:YAG 레이저를 이용한 CSP 1N 냉연강판 절단시 절단공정변수의 절단폭에 미치는 영향)

  • Ahn, Dong-Gyu;Kim, Min-Su;Lee, Sang-Hoon;Park, Hyung-Jun;Yoo, Young-Tae
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.910-915
    • /
    • 2004
  • The objective of this study is to investigate the influence of process parameters, such as power of laser, travel speed of laser and material thickness, on the practical cutting region and the kerfwidth for the case of cutting of CSP 1N sheet using high power Nd:YAG laser with continuous wave(CW). In order to find the practical cutting region and the relationship between process parameters on the kerfwidth, several laser cutting experiments are carried out. The effective heat input is introduced to consider the influence of power and travel speed of laser on the kerfwidth together. From the results of experiments, the allowable cutting region and the relationship between the effective heat input and kerfwidth for the case of cutting of CSP 1N sheet using high power CW Nd:YAG laser have been obtained to improve the dimensional accuracy of the cut area.

  • PDF

Study on High Speed Laser Cutting of Rigid Flexible Printed Circuit Board by using UV Laser with Nano-second Pulse Width (자외선 나노초 펄스 레이저를 이용한 경연성(Rigid Flexible) 인쇄전자회로기판(Printed Circuit Board) 고속 절단에 관한 연구)

  • Bae, Han-Sung;Park, Hee-Chun;Ryu, Kwang-Hyun;Nam, Gi-Jung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.2
    • /
    • pp.20-24
    • /
    • 2010
  • High speed cutting processes of rigid flexible printed circuit board by making use of high power UV laser with nano-second pulse width have been proposed and investigated experimentally. Also robust laser cutting system has been designed and developed in order to obtain a good cutting quality of rigid and flexible PCB with multi-layers (2-6 layers). Power controller module developed for ourselves is adapted to control the laser output power in the range less than 1%. The systems show the good performance of cutting speed, cutting width and cutting accuracy, respectively. Especially we have confirmed that the short circuit problem due to the carbonized contamination occurred in cross section of multi-layers by thermal effect of high power laser has been improved largely by using multi-pass cutting process with low power and high speed.

Study on the Power Consumption Characteristics of Korean Domestic Species in Peripheral Milling with Image Analysis Technique

  • Lee, Hyoung Woo;Kim, Byung Nam;Kim, Kyung Yong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.33 no.5 s.133
    • /
    • pp.38-44
    • /
    • 2005
  • Peripheral milling is one of the most important wood machining processes in wood industry. Power consumption characteristics of twelve Korean domestic species in peripheral milling were investigated in this study. Image analysis technique was applied to extract proper data from the power consumption profiles. Average power consumption increased as cutting depth increased and specific cutting power decreased as cutting depth increased. However, no significant relationship could be found between density and power consumption and between cutting depth and surface roughness.

Feed Optimization for High-Efficient Machining in Turning Process (선삭 공정에서의 고능률 가공을 위한 이송량의 최적화)

  • Kang, You-Gu;Cho, Jae-Wan;Kim, Seok-Il
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1338-1343
    • /
    • 2007
  • High-efficient machining, which means cutting a part in the least amount of time, is the most effective tool to improve productivity. In this study, a new feed optimization method based on the cutting power regulation was proposed to realize the high-efficient machining in turning process. The cutting area was evaluated by using the Boolean intersection operation between the cutting tool and workpiece. And the cutting force and power were predicted from the cutting parameters such as feed, depth of cut, spindle speed, specific cutting force, and so on. Especially, the reliability of the proposed optimization method was validated by comparing the predicted and measured cutting forces. The simulation results showed that the proposed optimization method could effectively enhance the productivity in turning process.

  • PDF

Feed Optimization Based on Virtual Manufacturing for High-Efficiency Turning (고능률 선삭 가공을 위한 가상 가공 기반의 이송량 최적화)

  • Kang, You-Gu;Cho, Jae-Wan;Kim, Seok-Il
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.9
    • /
    • pp.960-966
    • /
    • 2007
  • High-efficient machining, which means to machine a part in the least amount of time, is the most effective tool to improve productivity. In this study, a new feed optimization method based on virtual manufacturing was proposed to realize the high-efficient machining in turning process through the cutting power regulation. The cutting area was evaluated by using the Boolean intersection operation between the cutting tool and workpiece. And the cutting force and power were predicted from the cutting parameters such as feed, depth of cut, spindle speed, specific cutting force, and so on. Especially, the reliability of the proposed optimization method was validated by comparing the predicted and measured cutting forces. The simulation results showed that the proposed optimization method could effectively enhance the productivity in turning process.

Cutting Power Based Feedrate Optimization for High-Efficient Machining (고능률 가공을 위한 절삭 동력 기반의 이송 속도 최적화)

  • Cho Jaewan;Kim Seokil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.2 s.233
    • /
    • pp.333-340
    • /
    • 2005
  • Feedrate is one of the factors that have the significant effects on the productivity, qualify and tool life in the cutting mechanism as well as cutting velocity, depth of cut and width of cut. In this study, in order to realize the high-efficient machining, a new feedrate optimization method is proposed based on the concept that the optimum feedrate can be derived from the allowable cutting power since the cutting power can be predicted from the cutting parameters as feedrate, depth of cut, width of cut, chip thickness, engagement angle, rake angle, specific cutting force and so on. Tool paths are extracted from the original NC program via the reverse post-processing process and converted into the infinitesimal tool paths via the interpolation process. And the novel NC program is reconstructed by optimizing the feedrate of infinitesimal tool paths. Especially, the fast feedrate optimization is realized by using the Boolean operation based on the Goldfeather CSG rendering algorithm, and the simulation results reveal the availability of the proposed optimization method dramatically reducing the cutting time and/or the optimization time. As a result, the proposed optimization method will go far toward improving the productivity and qualify.

Effects of Laser Parameters and Workpiece Conditions on Cutting Characteristics of Solid Wood and Wood-based Panel(II) - Specific Cutting Energy and Surface Qualities - (레이저변수(變數)와 피삭재조건(被削材條件)이 목재(木材) 및 목질(木質)보드의 절삭특성(切削特性)에 미치는 영향(影響)(II) - 비절삭(比切削)에너지와 절삭면(切削面)의 품질(品質) -)

  • Sim, Jae-Hyeon;Jung, Hee-Suk
    • Journal of the Korean Wood Science and Technology
    • /
    • v.26 no.1
    • /
    • pp.38-50
    • /
    • 1998
  • Laser cutting tests were conducted to investigate the laser cutting characteristics of solid woods such as 25mm-thick white oak(Quercus acutissima) and maple(Acer mono), and wood-based panels such as 15mm-thick medium density fiberboard and particleboard. Test variables were laser power, cutting speed, grain direction, and moisture content. Specific cutting energy was measured and the qualities of cut surface were estimated in constant laser power. Specific cutting energy of white oak was larger than that of maple, and specific cutting energy of medium density fiberboard was smaller than that of particleboard. For both white oak and maple, specific cutting energy of green wood was smaller than that of air-dried wood because weight loss of moisture evaporation in green wood was larger than that in air-dried wood. In laser-cut surface, wood cells were not deformed and damaged, but in circular saw-cut surface fibers were pushed out and cut, and wood cells were deformed severely. However, mechanical surface roughness of saw-cut surface was smoother than that of laser-cut surface because of the existence of undeformed cell cavity in laser-cut surface.

  • PDF