• Title/Summary/Keyword: Cutting Planning

Search Result 171, Processing Time 0.027 seconds

A Study of the Autonomous Driving Path Planning for Concrete Pavement Cutting Operation (콘크리트 도로 표면절삭 작업을 위한 자율주행 진로계획 수립방안)

  • Moon, Sung-Woo;Seo, Jong-Won;Yang, Byong-Soo;Lee, Won-Sik
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2007.11a
    • /
    • pp.929-933
    • /
    • 2007
  • Concrete Pavement Cutting Operation have Labor-intensive features. And Cutting Operation quality and productivity is influenced by operator's experience. Moreover Workers have risk of safety concerns. Therefore we need Concrete Pavement Cutting Operation automation system and system support software development on the economics. First of all we have to develop driving Path Planning for Concrete Pavement Cutting automation system. If result of Path Planning connect with automation system, Weak points is a complement to the existing Path Planning and we can obtain effective automation system. Consequently this paper suggest method of Autonomous Driving Path Planning for Concrete Pavement Cutting Operation And the Path Planning system application.

  • PDF

Generation of Cutting Layers and Tool Selection for 3D Pocket Machining (3차원 포켓가공을 위한 절삭층 형성 및 공구선정)

  • 경영민;조규갑
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.9
    • /
    • pp.101-110
    • /
    • 1998
  • In process planning for 3D pocket machining, the critical issues for the optimal process planning are the generation of cutting layers and the tool selection for each cutting layers as well as the other factors such as the determination of machining types, tool path, etc. This paper describes the optimal tool selection on a single cutting layer for 2D pocket machining, the generation of cutting layers for 3D pocket machining, the determination of the thickness of each cutting layers, the determination of the tool combinations for each cutting layers and also the development of an algorithm for determining the machining sequence which reduces the number of tool exchanges, which are based on the backward approach. The branch and bound method is applied to select the optimal tools for each cutting layer, and an algorithmic procedure is developed to determine the machining sequence consisting of the pairs of the cutting layers and cutting tools to be used in the same operation.

  • PDF

Development of Operation Planning System for Worker's Productivity (작업자의 작업성향상을 위한 작업설계시스템의 개발)

  • Lim, Seok-Jin;Park, Byung-Tae;Park, Myon-Woong;Paik, Seung-Yeol;Jeong, Suk-Jae
    • Journal of the Korean Society of Safety
    • /
    • v.22 no.6
    • /
    • pp.74-80
    • /
    • 2007
  • In manufacturing industry, machining technology for metal cutting processes has been considered traditional and economic dimensions such as production cost, production time and quality of a final product. However, owing to governmental regulations and the change of owner's cognizance, the safety of the workers becomes important in those fields. In this paper, the operation planning system developed as a key component of CAPP(Computer Aided Process Planning) system is introduced for milling operations. The main issue in the system is to determine the cutting conditions in achieving a balanced consideration of productivity and worker's safety. For this reason, the system performs the modification process of standard cutting conditions to satisfy those requirements. Related to machining safety in metal cutting, representative and habitual mistakes that operators perform without considering carefully the characteristic of machine or work piece are described and then the detailed algorithm and functions of the developed system is introduced and discussed.

A Study on the 3-D CNC Cutting Planning and Simulation by Z-Map Model (Z-Map 모델을 이용한 3차원 CNC 가공계획 및 절삭시뮬레이션에 관한 연구)

  • 송수용;김석일
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.683-688
    • /
    • 1994
  • Recently, the Z-Map model has been used widely to represent the three dimensional geometric shape and to achieve the cross-section and point evaluation of the shape. In this paper, the CNC cutting planning and simulation modules for product with three dimensional geometric shape are realized based on the Z-Map model. The realized system has the various capabilities related to the automatic generation of tool path for the rough and finish cutting processes, the automatic elimination of overcut, the automatic generation of CNC program for a machining center and the cutting simulation. Especially, the overcut-free tool path is obtained by using the CL Z-Map models which are composed of the offset surfaces of the geometric shape of product.

  • PDF

Optmization of Cutting Condition based on the Relationship between Tool Grade and Workpiece Material(I) (피삭제와 공구재종의 상관관계에 근거한 절삭조건의 최적화)

  • 한동원;고성림
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.1038-1043
    • /
    • 1997
  • To adapt the neural network proess for the purpose of determination of optimal utting onditions (optimal cutting speed and feed rate), some selection strategies for the machining factors are necessary, which is considered planning cutting process. In this case, factors that have both nonlinearity and strong relationship must be selected. Although tool grade and chemical properties of workpiece material have strong effect to cutting speed, it's not easy to find a analytic relation between them. In this paper, a mathematical method for determining the optimal amount of cutting (depth of cut, feed rate) is presented by tool goemetry and heat generation during cutting process. And various tool grade and workpiece material groups ase classified based on its chemical properties. Thier chemical composition and hardness are used as input pattern for neural network learnig. The result of learning shows the relationship between tool grade and workpiece material and it is proved that it can be used as a sub-system for automatic process planning system.

  • PDF

Generation of Effective Cutting Conditions for Machining Safety in a Manufacturing Industry

  • Seo, Ji-Han;Park, Byoung-Tae
    • International Journal of Safety
    • /
    • v.5 no.2
    • /
    • pp.34-37
    • /
    • 2006
  • As part of an effort to systematize the operation planning for cutting processes, the neural network method has been applied to model the process of selecting cutting conditions and subsequently to arrive at effective and safe cutting conditions through learning during training of the model. New cutting conditions that are more effective and safer for the given circumstance are obtained. The proposed algorithm deletes the old information previously learned, and then makes the network make at improvement by learning. As a result, the new algorithm provides useful cutting conditions for safer manufacturing environments. A variety of simulation cases illustrate the performance of the proposed methodology. The simulation results are provided and discussed.

A Study on Cutting Tool Selection Techniques for Rough and Finish Turning Operations (선삭가공에서 황삭 및 정삭용 절삭공구선정방법에 관한 연구)

  • 김인호
    • Korean Journal of Computational Design and Engineering
    • /
    • v.3 no.4
    • /
    • pp.236-242
    • /
    • 1998
  • This paper presents a development of computer aided cutting tool selection techniques for rough and finish turning operations. The developed system,. which is one of important activities for computer aided operation planning, firstly implements operation sequencing. Then, from relations of the size of machined area, recommended finishing allowance and maximum depth of cut, a main machining method is selected, a number of cut is calculated, cutting tools including toolholders and inserts are selected, and values for cutting parameters are determined. A cutting tool selection procedure is proposed for toolholders and inserts of ISO code in rough cutting, and some important parameters such as holder style, tool approach angle, tool function and its direction are described in detail. In order to demonstrate the validity of the system a case study is performed.

  • PDF

Development of Operation Planning System Considering Machining Safety (가공 안정성을 고려한 작업설계시스템의 개발)

  • Park, Byoung-Tae;Seo, Ji-Han;Kim, Hong-Jae;Oh, Young-Jin
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2008.11a
    • /
    • pp.421-427
    • /
    • 2008
  • In manufacturing industry, cutting parameters have an influence on reducing the production cost and time and deciding the quality of a final product However, owing to governmental regulations and the change of owner's cognizance, the machining safety becomes important in those fields relatively. The paper presents an intelligent operation planning system considering machining safety for milling operations. The main issue of the system is to determine the cutting parameters in achieving a balanced consideration of productivity and worker's safety. The detailed algorithm and functions of the developed system is introduced and then discussed.

  • PDF

휴리스틱 매핑에의한 절삭조건의 결정

  • 김성근;박면웅;손영태;박병태;맹희영
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.04b
    • /
    • pp.262-266
    • /
    • 1993
  • The development of COPS(Computer aided Operation Planning System) needs data mapping paradigm which provides intelligent determonation of cutting conditions from the requirements of process planning side. We proposed the idea of multi-level mapping by the combination of heuristics of domain experts and mathematical abstraction of cutting condition and requirements. Mathematical mathods for the generalization of heuristics were constructed by multi-layer perceptron. DBMS for determination of cutting conditions was constructed by classification and combination of best fitted models. Triangular fuzzy number was used to process the uncertainties in heuristics of experts.

Determination of Cutting Parameters Considering Machining Safety in Milling Operation (밀링작업에서 가공 안전성을 고려한 가공조건의 결정)

  • Park, Byoung-Tae
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.6 s.78
    • /
    • pp.116-121
    • /
    • 2006
  • In metal cutting processes, cutting conditions have an influence on reducing the production cost and deciding the quality of a final product. Process planners usually make modification to recommended cutting parameters obtained from machining data handbooks in order to satisfy requirements for individual operation. The modified cutting parameters also need to be examined for the safe machining. In this paper, a new operation planning system that allows the generation and check of modified cutting parameters is proposed for the milling process. A neural network methodology is introduced to identify mathematical models for generation of the modified cutting parameters, and several simplified rules and equations are presented for the check of the cutting parameters. Finally, the results are demonstrated with an example part.