• Title/Summary/Keyword: Cutting Plane Algorithm

Search Result 23, Processing Time 0.132 seconds

3D Segmentation of a Diagnostic Object in Ultrasound Images Using LoG Operator (초음파 영상에서 LoG 연산자를 이용한 진단 객체의 3차원 분할)

  • 정말남;곽종인;김상현;김남철
    • Journal of Biomedical Engineering Research
    • /
    • v.24 no.4
    • /
    • pp.247-257
    • /
    • 2003
  • This paper proposes a three-dimensional (3D) segmentation algorithm for extracting a diagnostic object from ultrasound images by using a LoG operator In the proposed algorithm, 2D cutting planes are first obtained by the equiangular revolution of a cross sectional Plane on a reference axis for a 3D volume data. In each 2D ultrasound image. a region of interest (ROI) box that is included tightly in a diagnostic object of interest is set. Inside the ROI box, a LoG operator, where the value of $\sigma$ is adaptively selected by the distance between reference points and the variance of the 2D image, extracts edges in the 2D image. In Post processing. regions of the edge image are found out by region filling, small regions in the region filled image are removed. and the contour image of the object is obtained by morphological opening finally. a 3D volume of the diagnostic object is rendered from the set of contour images obtained by post-processing. Experimental results for a tumor and gall bladder volume data show that the proposed method yields on average two times reduction in error rate over Krivanek's method when the results obtained manually are used as a reference data.

Analysis of singularity and redundancy control for robot-positioner system (로봇과 포지셔너 시스템의 특이성 분석과 여유 자유도 제어)

  • 전의식;장재원;서일홍;오재응;염성하
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.6
    • /
    • pp.1252-1264
    • /
    • 1988
  • Recently industrial robots together with positioners are often used to enhance the system performance for arc welding. In this paper, a redundancy control method is proposed to the robot-positioner system with seven degrees of freedom, where one kinematic modelling technique is employed. Also, manipulability in the given cutting plane of the workspace. An algorithm maximizing the manipulability is applied to the robot and the positioner and the simulation results are shown for the task following a linear path.

Geodesic Shape Finding Algorithm for the Pattern Generation of Tension Membrane Structures (막구조물의 재단도를 위한 측지선 형상해석 알고리즘)

  • Lee, Kyung-Soo;Han, Sang-Eul
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.1
    • /
    • pp.33-42
    • /
    • 2010
  • Patterning with a geodesic line is essential for economical or efficient usage of membrane materialsin fabric tension membrane structural engineering and analysis. The numerical algorithm to determine the geodesic line for membrane structures is generally classified into two. The first algorithm finds a non-linear shape using a fictitious geodesic element with an initial pre-stress, and the other algorithm is the geodesic line cutting or searching algorithm for arbitrarily curved 3D surface shapes. These two algorithms are still being used only for the three-node plane stress membrane element, and not for the four-node element. The lack of a numerical algorithm for geodesic lines with four-node membrane elements is the main reason for the infrequent use of the four-node membrane element in membrane structural engineering and design. In this paper, a modified numerical algorithm is proposed for the generation of a geodesic line that can be applied to three- or four-node elements at the same time. The explicit non-linear static Dynamic Relaxation Method (DRM) was applied to the non-linear geodesic shape-finding analysis by introducing the fictitiously tensioned 'strings' along the desired seams with the three- or four-node membrane element. The proposed algorithm was used for the numerical example for the non-linear geodesic shape-finding and patterning analysis to demonstrate the accuracy and efficiency, and thus, the potential, of the algorithm. The proposed geodesic shape-finding algorithm may improve the applicability of the four-node membrane element for membrane structural engineering and design analysis simultaneously in terms of the shape-finding analysis, the stress analysis, and the patterning analysis.