• Title/Summary/Keyword: Cutting Model

Search Result 894, Processing Time 0.029 seconds

The Minimizing of Cutting Depth using Vibration Cutting (진동절삭법을 이용한 절삭깊이의 최소화)

  • 손성민;안중환
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.11
    • /
    • pp.38-45
    • /
    • 2004
  • This paper discusses the minimum cutting thickness with a continuous chip in sub-micrometer order precision diamond cutting. An ultra precision cutting model is proposed, in which the tool edge radius and the friction coefficient are the principal factors determining the minimum cutting thickness. The experimental results verify the proposed model and provide various supporting evidence. In order to reduce the minimum cutting thickness a vibration cutting method is applied, and the effects are investigated through a series of experiments under the same conditions as conventional cutting method.

A Mechanistic Model for 3 Dimensional Cutting Force Prediction Considering Ploughing Force in Face Milling (정면밀링가공에서 쟁기력을 고려한 3차원 절삭력 모델링)

  • 권원태;김기대
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.2
    • /
    • pp.1-8
    • /
    • 2002
  • Cutting force is obtained as a sum of chip removing force and ploughing force. Chip removing force is estimated by multiplying specific cutting pressure by cutting area. Since ploughing force is caused from dullness of a tool, its magnitude is constant if depth of cut is bigger than a certain value. Using the linearity of chip removing force to cutting area and the constancy of ploughing force regardless of depth of cut which is over a certain limit each force is separated from measured cutting force and used to establish cutting force model. New rotation matrix to convert the measured cutting force in reference axes into the forces in cutter axes is obtained by considering that tool angles are projected angles from cutter axes to reference axes.. Spindle tilt is also considered far the model. The predicted cutting force estimated from the model is in good agreement with the measured force.

Drilling force model considering tool wear (마모를 고려한 드릴 절삭력 모델)

  • 최영준;주종남
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.1042-1047
    • /
    • 2001
  • A mechanistic model is developed to predict the thrust force and cutting torque of drilling process including wear. A mechanistic oblique cutting force model is used to develop the drilling force model. The cutting lips are divided into small elements and elemental forces are calculated by multiplying the specific cutting pressure with the elemental chip area. The specific cutting pressure is a function of chip thickness, cutting velocity, rake angle and wear. The total forces are then computed by summing the elemental forces. Measured cutting forces are in good agreement with the simulated cutting forces.

  • PDF

Specific Cutting Force Coefficients Modeling of End Milling by Neural Network

  • Lee, Sin-Young;Lee, Jang-Moo
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.6
    • /
    • pp.622-632
    • /
    • 2000
  • In a high precision vertical machining center, the estimation of cutting forces is important for many reasons such as prediction of chatter vibration, surface roughness and so on. The cutting forces are difficult to predict because they are very complex and time variant. In order to predict the cutting forces of end-milling processes for various cutting conditions, their mathematical model is important and the model is based on chip load, cutting geometry, and the relationship between cutting forces and chip loads. Specific cutting force coefficients of the model have been obtained as interpolation function types by averaging forces of cutting tests. In this paper the coefficients are obtained by neural network and the results of the conventional method and those of the proposed method are compared. The results show that the neural network method gives more correct values than the function type and that in the learning stage as the omitted number of experimental data increase the average errors increase as well.

  • PDF

A Study on Optimal Design of Face Milling Cutter Geometry(I) -With Respect to Cutting Force- (정면밀링커터의 최적설계에 대한 연구(1) -절삭력 중심으로-)

  • 김정현;김희술
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.9
    • /
    • pp.2211-2224
    • /
    • 1994
  • On face milling operation a new optimal cutter, which can minimize the resultant cutting forces, was designed from the cutting force model. Cutting experiments were carried out and the cutting forces of the new and conventional cutters were analyed in time and frequency domains. The resultant cutting forces were used as the objective function and cutter angles as the variables. A new optimal cutter design model which can minimize the resultant cutting forces under the constraints of variables was developed and its usefulness was proven. The cutting forces in feed direction of the newly designed cutter are reduced in comparison with those from the conventional cutter. The magnitudes of an insert frequency component of cutting force from the newly designed cutter are reduced than those from conventional cutter and the fluctuations of cutting force are also reduced.

Cutting Force Estimation Using Spindle Motor Power (주축 모터 동력을 이용한 절삭력 예측)

  • 최영준;김기대;주종남
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.1088-1094
    • /
    • 1997
  • An indirect cutting torque and cutting force estimation method is presented. This method uses a time-domain model between the spindle motor power, which calculated form measured spindle motor current and voltage. Spindle motor power is linear with cutting torque in this model. The cutting force is proportional to the cutting torque. Using trial cut, parameters are determined. Static sensitivity is suitable for various cutting conditions. The presented method is verified under several cutting tests on the CNC horizontal machining center.

  • PDF

Prediction of Cutting Forces in High Speed End Milling (고속 엔드밀 가공에서의 절삭력 예측)

  • Jung, Sung-Chan;Kim, Kug Weon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.4 no.4
    • /
    • pp.21-27
    • /
    • 2005
  • Recently researches for high speed machining have been actively performed. Few analytical studies, however, have been published. In this paper, a model of cutting forces is analytically studied to predict cutting characteristics in end mill process, especially considering both feed rate and spindle speed. The developed cutting model is based on Oxley's machining theory, which predicts the cutting forces from input data of workpiece material properties, tool geometry and cutting conditions. Experimental verification has been performed to verify the predictive cutting force model using tool dynamometer. It has been found that the simulation results substantially agree with experimental results.

  • PDF

Model-Based Monitoring of the Turning Force (모델에 근거한 선삭력 모니터링)

  • 허건수
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.11-15
    • /
    • 1999
  • Monitoring of the cutting force signals in cutting process has been well emphasized in machine tool communities. Although the cutting force can be directly measured by a tool dynamometer, this method is not always feasible because of high cost and limitations in setup. In this paper an indirect cutting force monitoring system is developed so that the cutting force in turning process is estimated based on a AC spindle drive model. This monitoring system considers the cutting force as a disturbance input to the spindle drive and estimates the cutting force based on the inverse dynamic model. The inverse dynamic model represents the dynamic relation between the cutting force, the motor torque and the motor power. The proposed monitoring system is realized on a CNC lathe and its estimation performance is evaluated experimentally.

  • PDF

Vibration Prediction in Milling Process by Using Neural Network (신경회로망을 이용한 밀링 공정의 진동 예측)

  • 이신영
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.5
    • /
    • pp.1-7
    • /
    • 2003
  • In order to predict vibrations occurred during end-milling processes, the cutting dynamics was modelled by using neural network and combined with structural dynamics by considering dynamic cutting state. Specific cutting force constants of the cutting dynamics model were obtained by averaging cutting forces. Tool diameter, cutting speed, fled, axial and radial depth of cut were considered as machining factors in neural network model of cutting dynamics. Cutting farces by test and by neural network simulation were compared and the vibration displacement during end-milling was simulated.

A Mechanistic Model for the Prediction of Cutting Forces in Band Sawing (톱기계에서 절삭력 예측을 위한 역학모델)

  • Jung, Hoon;Ko, Tae-Jo;Kim, Hee-Sool
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.5
    • /
    • pp.145-152
    • /
    • 1998
  • In this research, in order to predict the cutting force using a mechanistic model, specific cutting force was firstly obtained through the cutting experiments. Band sawing process is similar to a milling, that is multi-point cutting. Therefore it is not easy matter to evaluate specific cutting force. Thus, the thickness of workpiec was made smaller than one pitch of the saw in terms of fly cutting in the face milling process. Then the cutting force was predicted by analyzing the geometric shape of a saw tooth The tooth shape used in the research was raker set style that was generally used in band sawing. And a set of teeth is comprised of three teeth, those are ranked as left, straight and right. The mechanistic model was developed in this study considered those shapes of each tooth. From the validation experiments, the predicted cutting forces coincided well with the measured ones. Therefore the predicted cutting forces can be used for the adaptive control of saw engaging feed rate in the band sawing.

  • PDF