• Title/Summary/Keyword: Cutting Heat

Search Result 355, Processing Time 0.029 seconds

An analytical Machining models based on Flow Stress Properties for Non-Heat Treated and Heat Treated AISI 4140 Steel (열처리 및 비 열처리 AISI4140강의 유동응력 물성치를 기초로 하는 해석적 가공 모델 연구)

  • Lee, Tae-Hong
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.4
    • /
    • pp.419-426
    • /
    • 2011
  • In this study, an experimental and theoretical program were carried out to determine the cutting forces and chip formation at different cutting speeds using a 0.4mm nose radius ceramic insert and -7 rake angle for non heat-treated AISI 4140 (27HRc) and heat-treated AISI 4140 (45 HRc) steel. The results obtained were compared to show the hardness differences between the materials. The secondary deformation zone thicknesses when comparing the two materials show different physical structure but similar size. These results were also discussed in light of the heat treatment and the effects it had on the machining characteristics of the material. In addition, the Oxley Machining Theory was used to predict the cutting forces for these materials and a comparison made. The predicted cutting performances were verified experimentally and showed good agreement with experimental data.

Arc efficiency and kerf width in plasma arc cutting process (플라즈마 절단공정에서의 아아크 효율과 절단폭)

  • 노태정;나석주
    • Journal of Welding and Joining
    • /
    • v.5 no.1
    • /
    • pp.23-33
    • /
    • 1987
  • Plasma arc cutting is a fusion cutting process in which a gas constricted arc is employed to produce high temperature, high velocity jet at the workpiece. Even though the plasma arc cutting has been wid¬ely used in the industry, very little work has been done on the analysis of the process. In this paper, the kerf width was numerically analyzed by soving the temperature distribution in base metal under consideration of the latent heat effect. In modelling the heat flow problem, the heat intensity of the plasma arc was assumed to have a Gaussion distribution in the transverse direction and expone¬ntially decreasing in the thickness direction. The thermal efficiency and the heat input ratio of the top surface were experimentally deterimned for various thickness and cutting conditions, and used in numerical calculation of the kerf width. The experimental results were in eonsiderabely good agreement with the theoretically predicted kerf width.

  • PDF

Investigation into effect of cutting angle on the thermal characteristics in the linear heat cutting of EPS foam (EPS foam의 선형 열선 절단시 절단 경사각의 영향에 관한 연구)

  • 안동규;이상호;양동열;윤석환
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.947-951
    • /
    • 2002
  • During the hotwire cutting of EPS foam sheet, the dimensional accuracy and part quality of the cut par are highly dependent upon the thermal field in the EPS. The thermal field is determined by operating parameters such as heat input, cutting speed and cutting angle. The objective of this study is to investigate into the influence of cutting angle on the kerfwidth and part quality of the cut part in hotwire cutting of EPS foam using the experiments and the numerical analysis in the case of a single sloped cutting. In order to estimate an accurate temperature field, the transient thermal analysis using a moving coordinate system and the sloped heat flux model is carried out. From the results of the experiments and the analysis, it has been found that the effect of cutting angle on the kerfwidth and the melted area at the edge are 0.1 mm and 0.11 m$m^2$ respectively. The results of the experiments show that the surface roughness is not appreciably influenced by the cutting angle.

  • PDF

A Study on Heat Generation and Machining Accuracy According to Material of Ultra-precision Machining (초정밀가공의 재질에 따른 발열과 가공정밀도에 관한 연구)

  • Lee, Gyung-Il;Kim, Jae-Yeol
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.1
    • /
    • pp.63-68
    • /
    • 2018
  • At present, ultra-precision cutting technology has been studied in Korean research institutes, focusing on development of ultra-precision cutting tool technology and ultra-precision control engineering. However, the developed technologies are still far behind advanced countries. It focuses on metals including aluminum, copper and nickel, and nonmetals including plastics, silicone and germanium which require high precision while using a lathe. It is hard to implement high precision by grinding the aforementioned materials. To address the issue, the ultra-precision cutting technology has been developing by using ultra-precision machine tools very accurate and strong, and diamond tools highly abrasion-resistant. To address this issue, this study aims to conduct ultra-precision cutting by using ECTS (Error Compensation Tool Servo) to improve motion precision of elements and components, and compensate for motion errors in real time. An IR camera is used for analyzing cutting accuracy differences depending on the heat generated in diamond tools in cutting to examine the heat generated in cutting to study cutting accuracy depending on generated heat.

Fracture Characteristics of Cutting Tools in Machining of Hardened Alloy Steel (열처리한 합금공구강의 절삭에서 공구파손의 특성)

  • Noh, S.L.;An, S.O.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.7 no.3
    • /
    • pp.199-205
    • /
    • 1994
  • The fracture characteristics and tool life of ceramics and WC, CBN cutting tool when turning heat treated steel STD11($H_RC$ 60) were investigated experimentally to clarify the machinability and optimum tool materials in cutting of difficult-to-cut material with high hardness. Forthermore, the behaviors of the tool wear and failure were examined with regard to cutting force. The hardened steel wore the cutting tool edge rapidily and increased the cutting forces, especially radial force. The tool was worn by the abrasive action. Flank Weat of $Al_2O_3-TiC$ ceramic and WC tool become relatively large and CBN & $Al_2O_3$, ceramic tool had a long life among the tool materials tested. The tool fracture patterns were just like minor cutting wear, flank wear, crater wear, notch wear, chipping. Flank wear rate was accelerated by occurrence of chipping. During the proceeding of machining, it was possible to foresee the catastrophic fracture of tool by abrupt increase of radial force.

  • PDF

Influence of process parameters on the kerfwidth for the case of laser cutting of CPS 1N sheet using high power CW Nd:YAG laser (고출력 연속파형 Nd:YAG 레이저를 이용한 CSP 1N 냉연강판 절단시 공정변수의 절단폭에 미치는 영향)

  • Kim Min-Su;Lee Sang-Hoon;Park Hyung-Jun;Yoo Young-Tae;Ahn Dong-Gyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.7 s.172
    • /
    • pp.19-26
    • /
    • 2005
  • The objective of this study is to investigate the influence of process parameters, such as power of laser, cutting speed of laser and material thickness, on the practical cutting region and the kerfwidth fer the case of cutting of CSP IN sheet using high power Nd:YAC laser in continuous wave(CW) mode. In order to obtain the practical cutting region and the relationship between process parameters on the kerfwidth, several laser cutting experiments are carried out. The effective heat input is introduced to consider the influence of power and cutting speed of laser on the kerfwidth together. From the results of experiments, the allowable cutting region and the relationship between the effective heat input and kerfwidth fur the case of cutting of CSP 1N sheet using high power CW Nd:YAG laser have been obtained to improve the dimensionalaccuracyofthecutarea.

A Study on Manufacturing Process Control and Monitoring System for Heat-Shrink-Tube Cutting Machine (열 수축 튜브 자동 절단 장치를 위한 공정제어 및 감시 시스템에 관한 연구)

  • Kim, Hyoung-Seok;Lee, Byung-Ryong;Yun, Ho-Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.12
    • /
    • pp.1140-1145
    • /
    • 2008
  • In conventional cutting system of Heat-Shrink-Tube, workers operate cutting system after considering about length and quantity of heat-shrink-tube. So, not only work time and production cost is increased but also material is wasted because the data that workers have to consider is so much. In this paper, an effective cutting system of heat-shrink-tube was developed to reduce production cost, work time and waste of material. The cutting system consists of a supervisory computer installed inside a control room, a on-site computer installed on the work area, and a PLC system. In the developed system, a supervisory computer send work order to the on-site computer using LAN and the on-site computer operates the cutting system of the heatshrink-tube after it makes an array production order. Also, the on-site computer reports information to the supervisory computer when an accident happened.

A Study on Characteristics of Cutting by Cutting Conditions in Titanium Machining (티타늄 가공의 절삭조건에 따른 가공특성에 관한 연구)

  • Kim, Gee-Hah
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.1
    • /
    • pp.84-89
    • /
    • 2013
  • Titanium used in industry has been widely applied for aerospace engine, structures and spacecraft exterior, etc. because the titanium is higher in strength compared to the steel and light in weight compared to the steel. This study is to investigate the effect of cutting depth and cutting time on the spindle speed and feed rate of vertical machining center as a parameter to find the rough cutting time and cutting depth in the medium speed cutting machining of the titanium alloy. It is found that the cutting machining heat are increased as the cutting depth, feed rate, cutting time and spindle speed are raised.

Temperature Measurement when High-speed Machining using Infra-red Thermal Imaging Camera (적외선 열화상 카메라를 이용한 고속가공에서의 열 발생 특성)

  • 김흥배;이우영;최성주;유중학
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.04a
    • /
    • pp.422-428
    • /
    • 2001
  • The term High Speed Machining has been used for many years to describe end milling with small diameter tools at high rotational speeds, typically 10,000 - 100,000 rpm. The process was applied in the aerospace industry for the machining of light alloys, notably aluminium. In recent year, however, the mold and die industry has begun to use the technology for the production of components, including those manufactured from hardened tool steels. With increasing cutting speed used in modern machining operation, the thermal aspects of cutting become more and more important. It not only directly influences in rate of tool wear, but also will affect machining precision recognized as thermal expansion and the roughness of the surface finish. Hence, one needs to accurately evaluate the rate of cutting heat generation and temperature distributions on the machining surface. To overcome the heat generation, we used to cutting fluid. Cutting fluid play a roles in metal cutting process. Mechanically coupled effectiveness of cutting fluids affect to friction coefficient at tool-work-piece interface and cutting temperature and chip control, surface finish, tool wear and form accuracy. Through this study, we examined the behavior of heat generation in high-speed machining and the cooling performance of various cooling methods.

  • PDF

Phase Transformation Characteristic of Nitinol Shape Memory Alloy with Annealing Treatment Conditions (어닐링 열처리 조건에 따른 NITINOL 형상기억합금의 상변환 특성 연구)

  • 여동진;윤성호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.426-429
    • /
    • 2003
  • In this study, phase transformation characteristics of Nitinol shape memory alloy with 54.5wt%Ni-45.5wt%Ti were investigated by varying with annealing treatment and cutting conditions through DSC(differential scanning calorimetry). Annealing treatment conditions were considered as heat treated time of 5 min, 15 min, 30 min, and 45 min, heat treated temperature of 40$0^{\circ}C$, 50$0^{\circ}C$, 5$25^{\circ}C$, 55$0^{\circ}C$, 575$^{\circ}C$, $600^{\circ}C$, $700^{\circ}C$, 80$0^{\circ}C$, and 90$0^{\circ}C$, and environmental condition of heat treatment under vacuum or air. Cutting conditions were considered as no cutting, one side cutting, and two side cutting. Tensile test was also conducted on Nitinol shape memory alloy to investigate thermomechanical characteristics by varying with annealing heat treatment histories. According to the results, annealing treatment and cutting conditions were found to significantly affect on phase transformation and thermomechanical characteristics of Nitinol shape memory alloy.

  • PDF