• 제목/요약/키워드: Cutting Device

검색결과 236건 처리시간 0.019초

Cutter blade 방식에 의한 사용후핵연료봉 절단 장치 개발 (Development of the Spent Fuel Rod Cutting Device by Cutter Blade Method)

  • 정재후;윤지섭;홍동회;김영환;김도우
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 추계학술대회 논문집
    • /
    • pp.393-396
    • /
    • 2000
  • Spent fuel rod cutting device should cut a spent fuel rod to an optimal size in order to fast decladding operation. In this paper, for developing spent fuel rod cutting device with cutter blade, rod properties such as dimension and material of zircaloy tube and fuel pellet are investigated at first and then, various methods of existing cutting devices used commercially are investigated and their performance are analyzed and compared. This device is designed to be operated automatically via remote control system considering later use in Hot-Cell (radioactive area) and the mdularization in the structure of this device makes maintenance easy. SUS and Zircaloy-4 are selected as cut material used in the test of spent fuel rod cutting device by cutter blade. In order for constructing the high durable cutter blade, various materials are analyzed in terms of quality, shape, characteristic, and heat treatment, etc. and from these results, spent fuel rod cutting device is designed and manufactured based on the considerations of durability, round shape sustainability of rod cross-section, debris generation, and fire risk, etc.

  • PDF

직교형 2차원 진동절삭기의 기구학적 해석 및 진동 특성 고찰 (Kinematical Analysis and Vibrational Characteristics of Orthogonal 2-dimensional Vibration Assisted Cutting Device)

  • 노병국;김기대
    • 한국소음진동공학회논문집
    • /
    • 제22권9호
    • /
    • pp.903-909
    • /
    • 2012
  • In elliptical vibration cutting(EVC) where the cutting tool traces a micro-scale 2-dimensional elliptical trajectory, the kinematical and vibrational characteristics of the EVC device greatly affect cutting performance. In this study, kinematical and vibrational characteristics of an EVC device constructed with two orthogonally-arranged stacked piezoelectric actuators were investigated both analytically and experimentally. The step voltage was applied to the orthogonal EVC device and the associated displacements of the cutting tool were measured to assess kinematical characteristics of the orthogonal EVC device. To investigate the vibrational characteristic of the orthogonal EVC, sinusoidal voltage was applied to the EVC device and the resulting displacements were measured. It was found from experiments that coupling of displacements in the thrust and cutting directions and the tilt of the major axis of the elliptical trajectory exists. In addition, as the excitation frequency is in vicinity of resonant frequencies the distortion in the shape of the elliptical trajectory becomes greater and change in the rotation direction occurs. To correct the shape distortion of the elliptical trajectory, the shape correcting procedure developed for the parallel EVC device was applied for the orthogonal EVC device and it was shown that the shape correcting method successfully corrects distortion.

평행한 적층 압전 액추에이터로 구성된 진동절삭기의 기구학적 특성 고찰 (Kinematical Characteristics of Vibration Assisted Cutting Device Constructed with Parallel Piezoelectric Stacked Actuators)

  • 노병국;김기대
    • 한국소음진동공학회논문집
    • /
    • 제21권12호
    • /
    • pp.1185-1191
    • /
    • 2011
  • The kinematic characteristics of cutting device significantly affects cutting performance in 2-dimensional elliptical vibration cutting(EVC) where the cutting tool cuts workpiece, traversing a micro-scale elliptical trajectory in a trochoidal motion. In this study, kinematical characteristics of EVC device constructed with two parallel stacked piezoelectric actuators were analytically modeled and compared with the experimental results. The EVC device was subjected to step and low-frequency(0.1 Hz) sinusoidal inputs to reveal only its kinematical displacement characteristics. Hysteresis in the motion of the device was observed in the thrust direction and distinctive skew of the major axis of the elliptical trajectory of the cutting tool was also noticed. Discrepancy in the voltage-to-displacement characteristics of the piezoelectric actuators was found to largely contribute to the skew of the major axis of the elliptical trajectory of the cutting tool. Analytical kinematical model predicted the cutting direction displacement within 10 % error in magnitude with no phase error, but in estimating the thrust direction displacement, it showed a $27^{\circ}$ of phase-lag compared with the measured displacement with no magnitude error.

Study on Process Monitoring of Elliptical Vibration Cutting by Utilizing Internal Data in Ultrasonic Elliptical Vibration Device

  • Jung, Hongjin;Hayasaka, Takehiro;Shamoto, Eiji
    • International Journal of Precision Engineering and Manufacturing-Green Technology
    • /
    • 제5권5호
    • /
    • pp.571-581
    • /
    • 2018
  • In the present study, monitoring of elliptical vibration cutting process by utilizing internal data in the ultrasonic elliptical vibration device without external sensors such as a dynamometer and displacement sensor is investigated. The internal data utilized here is the change of excitation frequency, i.e. resonant frequency of the device, voltages applied to the piezoelectric actuators composing the device, and electric currents flowing through the actuators. These internal data change automatically in the elliptical vibration control system in order to keep a constant elliptical vibration against the change of the cutting process. Correlativity between the process and the internal data is described by using a vibration model of ultrasonic elliptical vibration cutting and verified by several experiments, i.e. planing and mirror surface finishing of hardened die steel carried out with single crystalline diamond tools. As a result, it is proved that it is possible to estimate the elements of elliptical vibration cutting process, e.g. tool wear and machining load, which are important for stable cutting in such precision machining.

타원궤적 진동절삭기의 타원궤적 보정 (Compensating the Elliptical Trajectory of Elliptical Vibration Cutting Device)

  • 노병국;김기대
    • 한국정밀공학회지
    • /
    • 제28권7호
    • /
    • pp.789-795
    • /
    • 2011
  • In elliptical vibration cutting (EVC), cutting performance is largely affected by the shape of an elliptical path of the cutting tool. In this study, two parallel piezoelectric actuators were used to make an elliptical vibration cutting device. When harmonic voltages of $90^{\circ}$ out-of-phase are supplied to the EVC device, creation of an ideal elliptical trajectory whose major and minor axes are parallel to the cutting and thrust directions is anticipated from a kinematic analysis of the EVC device, however, the paths we experimentally observed showed significant distortions in its shape ranging from skew to excessive elongation of the major axis of the ellipse. To compensate distortions, an analytical model describing the elliptical path of the cutting tool was developed and verified with experimental results, and based on the analytical model, the distorted elliptical paths created at 100 Hz, 1 kHz, and 16 kHz were corrected for skew and elongation.

복합재료의 직교 절삭가공 특성에 관한 연구 (A study on the orthogonal cutting characteristics of glass fiber reinforced plastics)

  • 송화용;정용운;김준현;김주현
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2001년도 추계학술대회(한국공작기계학회)
    • /
    • pp.155-160
    • /
    • 2001
  • In the use of glass fiber reinforced plastics(GFRP) it is often necessary to cut the components, but the cutting of GFRP is often made difficult by the delamination of the compositions and short tool life. Experimental investigation was conducted to evaluate the chip formation of the glass fiber reinforced plastics during orthogonal cutting. The chip formation process, cutting force, and thrust force were studied. The chip formation processes were studied through the use of quick-stop device. Chip-tool contact areas were obtained with the use of the quick-stop device, and observed using optical microscopy after polishing. Cutting force and thrust force were measured through the use of the tool dynamometer.

  • PDF

All-in-one 어태치먼트 기반 PHC 파일 원커팅 두부정리 자동화 로봇의 프로토타입 개발 (Development of an All-in-one Attachment-based PHC Pile Head Cutting Robot Prototype)

  • 염동준;박예슬;김준상;김영석
    • 대한건축학회논문집:구조계
    • /
    • 제35권2호
    • /
    • pp.37-44
    • /
    • 2019
  • The primary objective of this study is to develop a prototype of all-in-one attachment-based PHC pile head cutting robot that improves the conventional work in safety, productivity, and quality. For this, the following research works are conducted sequentially; 1)literature review, 2)development of an all-in-one attachment-based PHC pile head cutting robot prototype, 3)performance evaluation of each device, 4)economic analysis of an automated method. As a result, PHC pile cutting level sensing device, PHC pile cutting device, PHC pile handling device are developed. Futhermore, working process of an automated method is developed based on result of performance evaluation. According to the economic analysis result, the cost of the automated method was 21.37% less than that of the conventional method, and the economic efficiency was also superior(ROR 215.44%, Break-even Point 5.52month). It is expected that conclusions for future improvements are used in the development of the all-in-one attachment-based PHC pile head cutting robot to practical use.

마이크로흘 드릴링 머신의 개발 및 절삭성능 평가 (Development of Micro-hole Drilling Machine and Assessment of cutting Performance)

  • 김민건;유병호
    • 한국공작기계학회논문집
    • /
    • 제10권5호
    • /
    • pp.39-44
    • /
    • 2001
  • In this paper, drill fred mechanism, cutting depth measuring device and sensing buzzer of drill contact were investigated in order to develop the micro-hole drilling machine. Also, measuring device of cutting resistance was developed in order to estimate cutting resistance from change of cutting condition. The results show that extremely-low fled rate(less then $17{\mu}m/S$${\mu}{\textrm}{m}$ /s) can be done and cutting depth can be measured by up to 1${\mu}{\textrm}{m}$ with developed drilling machine. Accordingly we could assemble a very cheap micro-hole drilling machine($\phi$ 0.05~0.5 mm). Also we got the some properties of cutting performance i.e. under the same condition, cutting torque decreases as increase of spindle speed and rapid fled of drill brings about the inferior cutting state under low spindle speed.

  • PDF

The Design and Development of An Oil Palm Fresh Fruit Bunch Cutting Device

  • Ahmad, Desa
    • 한국농업기계학회:학술대회논문집
    • /
    • 한국농업기계학회 1996년도 International Conference on Agricultural Machinery Engineering Proceedings
    • /
    • pp.458-468
    • /
    • 1996
  • The Oil Palm industry has developed tremendously with the increasing of planted area from 54,000 hectaresin 1960 to about 2.28 million hectares in 1995. This is expected to increase further to 2.5 million hectares by the year 2000. However, there has been an increasing difficulty in obtaining sufficient labour for the oil palm plantations. At present , harvesting of oil palm fresh fruit is facing an acute shortage of workforce as the workers are much more attracted to the better working environment and salary in the industrial sector. Harvesting of short palm is easily done by using a chisel attached to a short steel pole. Cutting is done by moving the tool at high speed to the target. The weight of the tool coupled with the speed of throwing will produce enough energy to cut the bunch stalk. In this cutting method, sharpness of the cutting device, weight of tool and the speed of throwing contribute to the efficiency of the tool . For the tall palms, a sickle attached to a ong pole is used and the job is more difficult compared to the short palms. Lifting of pole and cutting jobs require great effort and skills. This paper describes the basic design needs in developing an appropriate device that is practical for field use. A prototype design was developed and tested.

  • PDF

타원궤적 절삭기의 가진주파수에 따른 절삭 날 회전 진동 특성 (Characteristics of Rotational Vibration of Cutting Edge in Elliptical Vibration Cutting by Modulation of Excitation Frequency)

  • 노병국;김기대
    • 한국소음진동공학회논문집
    • /
    • 제21권3호
    • /
    • pp.258-263
    • /
    • 2011
  • The direction of the cutting tool plays a critical role in elliptical vibration cutting(EVC) where the cutting tool cuts workpiece in a trochoidal motion. In this study, EVC cutting device was developed using two parallel piezoelectric materials and it was observed that the rotation direction of the tool reverses as the EVC device undergoes resonance at which either flexural(cutting direction) or longitudinal( thrust direction) mode shapes occurs. To analytically explain reversal of the rotation direction, kinematic motion analysis of the tool was modified to incorporate amplification of the vibration amplitude and phase introduced by resonance. It successfully demonstrated, through Matlab simulation, reversal of the rotation direction of the cutting tool as the excitation frequency increases beyond resonance frequencies at which either flexural or longitudinal vibration occurs.