• Title/Summary/Keyword: Cutter surface

Search Result 178, Processing Time 0.027 seconds

A QUANTITATIVE ANALYSIS OF THE IN VIVO AMALGAM CORROSION PRODUCTS (Amalgam 부식산물의 정성분석에 관한 연구)

  • Lim, Byong-Mok;Um, Chung-Moon
    • Restorative Dentistry and Endodontics
    • /
    • v.16 no.2
    • /
    • pp.1-17
    • /
    • 1991
  • The purpose of this study was to analyze the in vivo amalgam corrosion products qualitatively. 30 molars with large, intact amalgam restorations were selected. All the restorations were more than 5 years old. Twenty of the removed amalgams were embedded in acrylic resin block. The exposed surfaces of fifteen embedded amalgams were polished by amalgam polishing kit, and the rest were observed without polishing. The remaining 10 amalgams were fractured centrally and perpendiculary to the occlusal surface with a wire-cutter. After all specimens were cleaned ultrasonically in distilled water, each surface was examined under S.E.M. and E.D.A.X. (Energy Dispersive Micro X-ray Analyzer) to determine the morphology and chemical nature of the corrosion products. The following results were obtained: 1. The surfaces of the unpolished amalgam restorations were covered with thin amorphous layer of Sn-Ca-P-S complex with numerous cracks. 2. In the conventional amalgams, the major corrosion products were Sn-Cl phases however, tin oxide phases were also observed. 3. Only tin oxide phase was identified in the high copper amalgam, but it was less frequently observed than in the conventional amalgam. 4. It was easier to observe the corrosion product morphology in the fractured surfaces than in the polished ones. The morphologies of the corrosion product crystals looked like a stack of slightly bended plates in the Sn-Cl phases and polyhedra or polygonal prisms in the tin oxide phases.

  • PDF

Study on CNC plasma-cutting worktable with improved lifetime (CNC 플라즈마 절단 작업테이블의 수명 향상에 관한 연구)

  • Na, Yeong-min;Lee, Hyun-seok;Kang, Tae-hun;Park, Jong-kyu
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.3
    • /
    • pp.112-123
    • /
    • 2015
  • There are many systems for cutting plates or pipes into a desired shape. A typical system is a plasma cutter. It uses plasma, which means that an effective design of the table supporting the workpiece is an important issue in order to ensure a long operational career. Conventional roller-support worktables have a short lifespan due to scratches from the plasma, and it is also difficult to maintain the roller balance. By using a bolt-fastening method, deformation and failure of the final product can occur due to the stress concentration at bolting points. To escape these issues, a polygon support and bracket fastening method was designed. Due to polygons having a number of support surfaces, when one surface has been damaged, it is possible to reuse the support by utilizing a different surface. The bracket-fastening method can extend the worktable lifetime and increase productivity by reducing stress concentration. In this paper, the polygon support/bracket-fastening method is compared with existing technologies. Consequently, performance benchmarks are verified through a structure analysis and experimentation.

A study on the optimal conditions for machining accuracy when endmill fillet cutting at the corner (코너부 모깍기 엔드밀가공시 가공정밀도의 최적조건에 관한 연구)

  • Choi, Sung-Yun;Kwon, Dae-Gyu;Park, In-Su;Wang, Duck-Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.4
    • /
    • pp.101-108
    • /
    • 2016
  • Endmill fillet cutting at the corner was conducted with the online measurement of cutting forces and tool deflection by a tool dynamometer and an eddy current sensor system. The profile of the machined surface was also compared with the CAD profile with a Coordinate Measuring Machine (CMM) and CALYPSO software. It was found that the end mill cutter with four blades has a better surface profile than that with two blades, and the cutting forces and tool deformation were increased as the cutting speed was increased. When the tool located at the degree $45^{\circ}$ corner was found to conduct the maximum cutting force than started to the point of the workpiece. As it was compared with the CMM and ANOVA analysis result in the case that the cutting force and tool deformation was the maximum, it was found that the result was affected by the spindle speed and the number of blades.

Generation of cutting Path Data for Fully Automated Transfer-type Variable Lamination Manufacturing Using EPS-Foam (완전 자동화된 단속형 가변적층쾌속조형공정을 위한 절단 경로 데이터 생성)

  • 이상호;안동규;김효찬;양동열;박두섭;심용보;채희창
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.599-602
    • /
    • 2002
  • A novel rapid prototyping (RP) process, an automated transfer type variable lamination manufacturing process (Automated VLM-ST) has been developed. In Automated VLM-ST, a vacuum chuck and linear moving system transfer the plate type material with two pilot holes to the rotation stage. A four-axis synchronized hotwire cutter cuts the material twice to generate Automated Unit Shape Layer (AUSL) with the desired width, side slopes, length, and two reference shapes in accordance with CAD data. Each AUSL is stacked on the stacking plate with two pilot pins using the pilot holes in AUSL and the pilot pins. Subsequently, adhesive is supplied to the top surface of the stacked AUSL by a bonding roller and pressure is simultaneously applied to the bottom surface of the stacked AUSL. Finally, three-dimensional shapes are rapidly fabricated. This paper describes the procedure for generating the cutting path data (AUSL data) f3r automated VLM-ST. The method for the generation of the Automated Unit Shape Layer (AUSL) in Automated VLM-ST was practically applied and fabricated for a various shapes.

  • PDF

Generation of Unit Shape Layer on CAD/CAM System for VLM-ST (VLM-ST용 CAD/CAM 시스템에서 단위 형상층 생성 방법 및 적용예)

  • 이상호;안동규;최홍석;양동열;문영복;채희창
    • Korean Journal of Computational Design and Engineering
    • /
    • v.7 no.3
    • /
    • pp.148-156
    • /
    • 2002
  • Most Rapid Prototyping (RP) processes adopt a solid Computer Aided Design (CAD) model, which will be sliced into thin layers of constant thickness in the building direction. Each cross-sectional layer is successively deposited and, simultaneously, bonded onto the previous layer; and eventually the stacked layers from a physical part of the model. A new RP process, the transfer-type Variable Lamination Manufacturing process using expandable polystyrene foam sheet (VLM-ST), has been developed to reduce building time and to improve the surface finish of parts with the thick layers and a sloping surface. This paper describes the generation of Unit Shape Layer (USL), the cutting path data of the linen. hotwire cutter for the VLM-ST process. USL is a three-dimensional layer with a thickness of more than 1 mm and a side slope, and it is the basic unit of cutting and building in the VLM-ST process. USL includes data such as layer thickness, positional coordinates, side angles of each layer, hotwire cutting speed, the heat input to the hotwire, and reference shape. The procedure of generating USL is as follows: (1)Generation of the mid-slice from the CAD model, (2)Conversion of the mid-slice into a simply connected domain, (3)Generation to the reference shape for the mid-slice, (4)Calculation of the rotation angle of the hotwire of the cutting system.

Jansen Mechanism Walker Made with EDISON Science Box (EDISON 과학상자를 이용한 얀센 메커니즘 보행 기구 제작)

  • Jang, Hoik;Lee, Hyeongbeom;Lee, Junghyeok
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.434-442
    • /
    • 2016
  • Jansen mechanism is composed of mechanical walking linkages that are designed and optimized by Theo Jansen in 1990. Although he has made optimum values for linkage dimensions for Jansen Mechanism, there are still various applications for this mechanism and also various optimum values for each application. In this paper, Jansen Mechanism optimization has been processed for the Science Box. The Science Box has its own linkage dimensions and related components and makes space for optimization process. For the optimization 3 to 4 linkage were selected which had no similar ratios of linkages between other applied Jansen mechanisms and to reduce experiment numbers. Response Surface Method was used with Minitab 17 for optimization and m.sketch was used for experimentation. Intuitive method had to be used to find optimum values as with RSM optimum value could not be found. EDISON Designer was used to make final CAD model with optimum values and laser cutter was used to get appropriate acryl panels for legs.

  • PDF

Generation of Cutting Path Data for Two Steps of the Cutting Process in Full- Automated VLM-ST (VLM-ST 공정의 완전 자동화를 위한 2단계 절단 경로 데이터 생성 방법에 관한 연구)

  • 이상호;안동규;김효찬;양동열;박두섭;채희창
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.1
    • /
    • pp.140-148
    • /
    • 2004
  • A novel rapid prototyping (RP) process, a full-automated transfer type variable lamination manufacturing process (Full-automated VLM-ST) has been developed. In the full-automated VLM-ST process, a vacuum chuck and a rectilinear motion system transfer the EPS foam material in the form of the plate with two pilot holes to the rotary supporting stage. The supplied material is then cut into an automated unit shape layer (AUSL) with a desired width, a desired length, a desired slope on the side surface, and a pair of reference shapes, which is called the guide shape (GS)’, including two pilot holes in accordance with CAD data through cutting in two steps using a four-axis synchronized hotwire cutter. Then, each AUSL is stacked by setting each AUSL with two pilot holes in the building plate with two pilot pins, and subsequently, adhesive is applied onto the top surface of the stacked AUSL by a bonding roller and pressure is simultaneously given to the bottom surface of the stacked AUSL. Finally, three-dimensional shapes are rapidly and automatically fabricated. This paper describes the method to generate guide shapes in AUSL data for the full-automated VLM-ST process. In order to examine the applicability of the method to generate guide shapes, three-dimensional shapes, such as a piston shape and a human head shape, are fabricated from the full-automated VLM-ST apparatus.

Experimental and numerical study on the stability of slurry shield tunneling in circular-gravel layer with different cover-span ratios

  • Liu, Xinrong;Liu, Dongshuang;Xiong, Fei;Han, Yafeng;Liu, Ronghan;Meng, Qingjun;Zhong, Zuliang;Chen, Qiang;Weng, Chengxian;Liu, Wenwu
    • Geomechanics and Engineering
    • /
    • v.28 no.3
    • /
    • pp.265-281
    • /
    • 2022
  • A set of slurry shield test system capable of cutter cutting and slurry automatic circulation is used to investigate the deformation characteristics, the evolution characteristics of support resistance and the distribution and evolution process of earth pressure during excavating and collapsing of slurry shield tunneling in circular-gravel layer. The influence of cover-span ratio on surface subsidence, support resistance and failure mode of excavation face is also discussed. Three-dimensional numerical calculations are performed to verify the reliability of the test results. The results show that, with the decrease of the supporting force of the excavation face, the surface subsidence goes through four stages: insensitivity, slow growth, rapid growth and stability. The influence of shield excavation on the axial earth pressure of the front soil is greater than that of the vertical earth pressure. When the support resistance of the excavation face decreases to the critical value, the soil in front of the excavation face collapses. The shape of the collapse is similar to that of a bucket. The ultimate support resistance increase with the increase of the cover-span ratio, however, the angle between the bottom of the collapsed body and the direction of the tunnel excavation axis when the excavation face is damaged increase first and then becomes stable. The surface settlement value and the range of settlement trough decrease with the increase of cover-span ratio. The numerical results are basically consistent with the model test results.

Effects of Pre-Sintering Surface Treatment and Liner Application on the Shear Bond Strength of Zirconia and Pressable Ceramic (소결 전 지르코니아 표면처리와 라이너 사용에 따른 지르코니아와 열가압성형도재의 전단결합강도)

  • Lee, Gwang-Young;Cho, Mi-Hyang;Choi, Sung-Min
    • Journal of Technologic Dentistry
    • /
    • v.37 no.3
    • /
    • pp.121-127
    • /
    • 2015
  • Purpose: This study was intended to investigate the effect of applying liner for chemical bonding and physical surface roughness created on zirconia by using a sandpaper before sintering on the bond strength between the two materials. Methods: Zirconia blocks were cut using a low-speed cutter. Plate-shaped specimen($6mm{\times}6mm{\times}3mm$) was fabricated by sintering after giving surface roughness according to four kinds of sandpapers. Depending on whether or not to use liner, 60 specimens were divided into two groups ZN(non-liner), ZL(liner), and the two groups were subdivided into four groups respectively in accordance with sandpaper used, totaling eight groups (n=10). The surface roughness (Ra) values and shapes before sintering were observed, and shear bond strength after pressing ceramic plasticity was measured with a universal testing machine. For a test of the significance, a one-way ANOVA was performed, and Tukey's multiple comparison test was conducted. Results: The observation of the surface roughness was SB04($2.22{\pm}1.16{\mu}m$), SB08($2.98{\pm}0.33{\mu}m$), SB12($2.44{\pm}1.32{\mu}m$), SB20($2.34{\pm}0.59{\mu}m$) and SA04($2.34{\pm}0.67{\mu}m$), SA08($1.28{\pm}0.90{\mu}m$), SA12($2.03{\pm}1.60{\mu}m$), SA20($2.19{\pm}1.73{\mu}m$). In the case of ZN Group, the shear bond strength was ZN04($23.26{\pm}3.83MPa$), ZN08($21.76{\pm}2.33MPa$), ZN12($20.49{\pm}3.01MPa$), ZN20($24.98{\pm}4.22MPa$)(p<0.05). As for ZL Group, the shear bond strength was ZL04($25.09{\pm}5.67MPa$), ZL08($22.98{\pm}2.26MPa$), ZL12($21.54{\pm}5.70MPa$), ZL20($23.98{\pm}3.23MPa$)(p<0.05). Conclusion: The research results showed that the bond strength of Zirconia core and Pressing ceramic was further improved by physical surface treatment before sintering, rather than by chemical bonding through liner surface treatment.

On the Characteristics in Surface Cutting for Face Cutter of Machining Center (머시닝센터 가공시 정면커터 표면가공특성 연구)

  • Park Dal Geun;Im Dae Sung
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.2
    • /
    • pp.21-26
    • /
    • 2005
  • From on the machining center cutting work of 5534, the characteristics such as spindle speed and feed speed fir the third point height, average spacing of roughness peaks, bearing ratio, center line average, ten point height. experiments is roughness for sampling length determine to measuring length of cutting feed speed 200, 400, 600, 800mm/min and spindle speed 800, 1000, 1200, 1400rpm. Third point height is spindle speed with most suitable cutting condition 1000rpm. Third point height is feed speed with most suitable cutting condition 400mm/min. Average spacing of roughness peaks are spindle speed with most suitable cutting condition feed speed increased to average spacing of roughness Peaks are increased. Spindle speed increased to average spacing of roughness peaks are decreased. Bearing ratio is spindle speed with feed speed increased to bearing ratio decreased. Center line average is spindle speed with most suitable cutting condition at 1200rpm feed speed with most suitable cutting condition at 200mm/min to cutting foe roughness suddenly decreased. Ten point height is spindle speed with most suitable cutting condition 1200rpm at ten point height cutting face roughness to decreased and feed speed with most suitable cutting condition 800mm/min at ten point height cutting face roughness to decreased.