• Title/Summary/Keyword: Cut Pile

Search Result 53, Processing Time 0.015 seconds

A Study on Korean Man's Head Ornaments in the Joseon Dynasty (조선시대 남자(男子)의 수식(首飾) 연구(I))

  • Chang, Sook-Whan
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.10 no.1
    • /
    • pp.99-116
    • /
    • 2008
  • This study reviewed pertinent literature and examined relics of manggon(a headband worn to hold a man's topknot hair in place), donggot(a topknot pin), and chigwan(a topknot cover). Before the modernized short hair style, wearing a gat was an important custom. Therefore, manggon, which was used to hold a man's hair in place under the gat, was considered an essential part of the man's official dress code. Donggot is a pin that held the topknot hair in place. It was a must have for a married man, like the binyeo, a lod-like hairpin, for a married woman. Unlike gwanja, it had nothing to do with official rank, but materials were of a variety of materials, including jade and gold. The structure of the donggot was studied in three parts-head, neck and body. Major forms for the head include the mushroom, bean and ball. Bullet and half-cut bullet forms were also found. Forms for the neck include straight-neck and curved-neck. A neck with a belt around a double chin was also found. Forms for the body include the tetrahedron, octahedron and cylinder. The most popular form for silver and white bronze donggot heads was the mushroom, followed by bean and pile forms. Chigwan is also called chipogwan, chichoal, choalgyesogwan, noingwan and sangtugwan. In poetry it was called chichoal, and it used to be called taegogwan in the past as well. Chigwan was so small that it managed to hold a topknot. According to confucian custom in the Joseon period, by wearing chigwan, men didn't display their bare topknot even when they didn't dress up. When they went out, they wore another official hat over the chigwan.

  • PDF

A Textile Analysis of Woolen Carpet Excavated from Seongjeonggak Hall, in Changdeokgung Palace (창덕궁 성정각 출토 모담(毛毯) 직물 분석)

  • Pak, Seonghee;Lee, Ryangmi;An, Boyeon;Cho, Misook
    • Journal of Conservation Science
    • /
    • v.37 no.2
    • /
    • pp.120-134
    • /
    • 2021
  • A Woolen carpet from the late Joseon Dynasty was unearthed in the process of repairing Seongjeonggak in Changdeokgung. Since relics are rarer than documentary records, the woolen carpet is highly valued as a relics. It is presumed to have been woven in the late 19th or early 20th century because there is a record of repairing Seongjeonggak in 1907. In the carpet, a pattern is made by inserting colored yarn dyed yellow and red onto a reddish-purple ground weave. The selvage of the woolen carpet used cotton thread, and jute is used for the warp and weft of the ground weave. The colored patterns is made of wool in the form of loop pile. Cut piles may appear occasionally when the colored yarn changes, but are almost invisible from the surface because they are pressed tightly with a shuttered weft. Making carpets with jute and wool is thought to be influenced by the Brussels carpets of the mid-18th century. Furthermore, the woolen carpet is torn and the pattern is completely unclear; however, it is understandable that the pattern is partially repeated. Microscopic and Fourier transform-Infrared spectrometer(FT-IR) analyses were performed for the above investigation. To identify the dyes used in relics, we compared them with natural dyed fabric samples based on chromaticity measurements and Ultraviolet/Visible spectrophotometer(UV-Vis) analysis. These analyses revealed that the woolen carpet's dyed green yarn did not use indigo, and reddish-purple ground weave is estimated to have used Caesalpinia sappan.

Analysis of microplastics released from textiles according to filter pore size and fabric weight during washing (세탁 중 세탁물 중량과 여과 기공 크기에 따른 미세플라스틱 분석)

  • Choi, Sola;Kwon, MiYeon;Park, Myung-Ja;Kim, Juhea
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.23 no.1
    • /
    • pp.37-45
    • /
    • 2021
  • This study observed the release of microplastics according to washing weights and filtering conditions, measured microplastic generation rates, fiber lengths, and fiber diameters. This study attempted to present data for the development of filters that decrease microplastic generation. For test samples, polyester piled knit fabric (cut-pile) was selected, which currently has the highest amount of consumption in the clothing industry, but can easily cause marine pollution because of its low biodegradability. For test equipment, a drum washer was used and microplastics were collected using two filter pore sizes, 5 ㎛ and 20-25 ㎛. Microplastic fibers weights and lengths were measured. The results of the experiment showed the following: 1) The release of microplastics differed according to the fabric weights and washing process; 2) washing fabric weights showed a differences in the collection amount according to the filter pore size (5 ㎛, 20-25 ㎛); 3) observations of differences in the lengths of the microplastics that occur during the washing process by filter pore size were made. Fibers with shorter lengths appeared with filter pore sizes of 5㎛ in comparison to filter pore sizes of 20-25㎛. The results from this study on microplastic generation by fabric during washing, demonstrated the following conclusions that can be used to reduce the release of microplastics. First, the release of microplastics according to fabric weights and washing courses are affected by physical force. Therefore, it is necessary to reduce the amount of physical force due to water flow, increase the fabric weight, or wash the material in low temperatures. Second, in the manufacturing of washing machines, microplastic filtration can be promoted or legislatation supporting microplastic filtration can be introduced.