• Title/Summary/Keyword: Cut Flower

Search Result 340, Processing Time 0.02 seconds

Skewed Inheritance of EST-SSR Alleles in Reciprocal Crosses of Cut Roses (절화장미 품종간 정역교배에 있어서 EST-SSR 마커의 유전)

  • Kim, Jin-Ki;Ahn, Dong-Chun;Oh, Hye-Jeong;Kim, Kwang-Hwan;Choi, Young-Mi;Oh, Seung-Yong;Kang, Nam-Jun;Jeong, Byoung-Ryong;Kim, Zhoo-Hyeon;Park, Young-Hoon
    • Horticultural Science & Technology
    • /
    • v.28 no.4
    • /
    • pp.618-626
    • /
    • 2010
  • Matroclinal inheritance of morphological characters in interspecific crosses of Rosa spp. can be influenced by cytoplasmic inheritance, apomixis, and asynaptic heterogamy. In asynaptic heterogamy, which is often observed from interspecific crosses of Rosa sect. $Caninae$, the polyploidy of the seed parent (especially for 5x=35) is recovered in the progeny through the pollens that include only a set of bivalents (x=7) and egg cells that contain a set of bivalents (x=7) and other univalents (3x=21). In this study, we investigated the causes of matroclinal offsprings observed from reciprocal crosses of tetraploid cut rose cultivars ($Rosa$ $hybrida$ L.) by analyzing EST-SSR marker distribution in the progeny populations. From EST-SSR marker analysis of eight offsprings per six reciprocal crosses among six cultivars, cases of cytoplasmic inheritance were not observed. Apomixis was also very rare as compared to the reports on interspecific crosses of sect. $Caninae$; only one apomitic plant was identified from the cross 'Redtem' ${\times}$ 'Red Sandra'. Although a clear-cut pattern of asynaptic heterogamy was not found, cultivar-specific marker transmission skewed to seed parent in four cultivars implied that genetic inheritance can be highly influenced by the seed parent depending on crosses among cut rose cultivars; especially, 10 out of 11 alleles specific to 'Yellow King' distributed in progenies at higher ratios when the cultivars were crossed as the seed parent.

Antimicrobial Effect of Chlorine Dioxide on Vase Life of Cut Rose 'Beast' (Chlorine Dioxide가 절화장미 수명연장에 미치는 항균효과)

  • Lee, Young Boon;Kim, Wan Soon
    • Horticultural Science & Technology
    • /
    • v.32 no.1
    • /
    • pp.60-65
    • /
    • 2014
  • This study was conducted to investigate the antimicrobial effect of chlorine dioxide ($ClO_2$) on the vase life of cut rose 'Beast' (Rosa hybrida L.). Postharvest treatments to extend the vase life of cut roses were divided into two: holding solution treatment and pulsing solution treatment. In holding solution treatment, the cut roses were treated with preservative solutions containing tap water (TW, control), distilled water (DW), $ClO_2$ 2, 4, 6, and $8{\mu}L{\cdot}L^{-1}$, and compared with a commercialized antimicrobial compound of 8-HQS $200{\mu}L{\cdot}L^{-1}$. In pulsing solution treatment, cut roses were dipped into the $ClO_2$ solutions of 50, 100, 150, 200, and $250{\mu}L{\cdot}L^{-1}$ for 60 seconds and were placed in DW. The air temperature was $18.4^{\circ}C$, RH 51.5%, and light (photosynthetically active radiation, PAR) $3.6{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ with 12 hour day length. The longest vase life of cut roses was observed in the holding solution with $ClO_2$ $4{\mu}L{\cdot}L^{-1}$ as 13.8 days and pulsing with $200-250{\mu}L{\cdot}L^{-1}$ as 13.5-13.7 days, where vase life were extended four days longer than TW. Whereas, the inclusion of 8-HQS $200{\mu}L{\cdot}L^{-1}$ in vase solution resulted in phytotoxicity. The relative fresh weight and water uptake have similar tendencies. Bacteria inhibition by $ClO_2$ and 8-HQS were very effective. But bacteria at TW and DW treatments on cut flower with stem were detected in $3.7{\times}10^5CFU{\cdot}L^{-1}$ and $6.3{\times}10^5CFU{\cdot}L^{-1}$, respectively (without stem in DW $1.4{\times}10^4CFU{\cdot}L^{-1}$). The $ClO_2$ contents in holding solution of all treatments were scavenged in two-four days after treatment. This study indicated that $ClO_2$ $4{\mu}L{\cdot}L^{-1}$ holding solution treatment and $200-250{\mu}L{\cdot}L^{-1}$ pulsing solution treatment can be applied to extend the postharvest life of cut roses.

Recent trends in tissue culture and genetic transformation of Phalaenopsis (팔레놉시스 조직배양 및 형질전환 최근 연구동향)

  • Roh, Hee-Sun;Lee, Sang-Il;Lee, Yi-Re;Baek, Sun-Young;Kim, Jong-Bo
    • Journal of Plant Biotechnology
    • /
    • v.39 no.4
    • /
    • pp.225-234
    • /
    • 2012
  • This report describes recent advances in tissue culture and genetic transformation of commercial Phalaenopsis. Recently, an importance of Phalaenopsis has been increased due to its popularity with beautiful flowers and is widely used for pot plants as well as cut-flower. Its use is rapidly enlarging in worldwide. Thus, demands for the release of new elite cultivars in Phalaenopsis have been increased. During the last several decades, some critical progresses have been made in tissue culture and genetic transformation in Phalaenopsis species. Cooperation with these biotechnological methods are supposed to promote the release of commercial Phalaenopsis cultivars in the near future. Until now, no technical review on tissue culture and genetic transformation in Phalaenopsis has been reported in Korea. Therefore, we inquired the brief history and techniques of tissue culture system in Korea.

Alstroemeria plants and its biotechnological applications

  • Lim, Sung-Soo;Lee, Sang-Il;Kang, Se-Chan;Kim, Jong-Bo
    • Journal of Plant Biotechnology
    • /
    • v.39 no.4
    • /
    • pp.219-224
    • /
    • 2012
  • Alstroemeria plants are widely cultivated in many countries especially in Western Europe and North America and popularity has increased in recently due to its long-base life, large variety of colors and low energy requirement during cultivation period. So far, more than 60 species have been released on the commercial market in the world. To meet the demand of consumer and develop the elite Alstroemeria cultivars, conventional breeding including cross-hybridization and selection as well as mutation breeding were used. However, as other important ornamental plants such as lily, rose, carnation and orchids accepted the biotechnological methods, this newly-born approach should be applied and developed an optimized the genetic transformation system. Then, this biotechnological approach can be fused with the conventional breeding methods and thus can be contributed to the production of elite Alstroemeria plants containing agriculturally good genetic traits which are useful for the both farmers and consumers in the future. In this paper, we reviewed the botanical and genetical features of Alstroemeria plants and its biotechnological approaches in the last decades.

Review on the development of virus resistant plants in Alstroemeria

  • Park, Tae-Ho;Han, In-Song;Kim, Jong-Bo
    • Journal of Plant Biotechnology
    • /
    • v.37 no.4
    • /
    • pp.370-378
    • /
    • 2010
  • This review describes the stratagies of development of virus-resistant Alstroemeria plants using the genetic modification system. Despite of increasing of its importance in cut flower market, improvements of some horticultuirally important traits such as fragrance, long vase-life, virus resistance and tolerance against abiotic stresses are lack of the breeding program in Alstroemeria. Of these traits, virus-resistance is quite difficult to develop in Alstroemeria plants due to the limitations of genetic variation in the existed germplasm. To extend the genetic variation, plant biotechnological techniques such as genetic transformation and tissue culture should be combined to develop virus-resistant line in Alstroemeria. In this review, several strategies for the generation of virus-resistance by using natural resistance genes, pathogen-derived genes and other sources including pathogen-derived proteins, virus-specific antibodies and ribosome-inactivating proteins are presented. Also, brief histories of breeding, tissue culture, and transformation system in Alstroemeria plants are described to inderstand of the application of transgenic approach for the development of virus-resistance in Alstroemeria species.

Regrowth of Buds and Flower Bud Formation in Kiwifruit as Affected by Early Defoliation (조기낙엽에 따른 참다래(골드러쉬) 무착과 유목 액아의 발아와 착화)

  • Kwack, Yong-Bum;Kim, Hong Lim;Chae, Won-Byoung;Lee, Jae Han;Lee, Eung Ho;Kim, Jin Gook;Lee, Yong Bok
    • Korean Journal of Environmental Agriculture
    • /
    • v.32 no.3
    • /
    • pp.201-206
    • /
    • 2013
  • BACKGROUND: Kiwifruit, which was introduced to Korea in late 1970s, is a warm-temperate fruit tree, whose leaves are easily damaged by wind because of their large size. To produce high quality fruits, efficient windbreak is necessary to protect leaves until harvest. In Korea, typhoons from July onwards usually influence the production of kiwifruit. Damages from typhoons include low fruit quality in the current year and low flowering ratio the following year. This study was conducted to investigate the effect of early defoliation of kiwifruit vines from July to October on the regrowth of shoot axillary buds the current year and bud break and flowering the following year. METHODS AND RESULTS: Scions of kiwifruit cultivar 'Goldrush' were veneer grafted onto five-year-old Actinidia deliciosa rootstocks, planted in Wagner pots (13L) and grown in a rain shelter. Kiwifruit leaves in the proximity of leaf stalk were cut by lopping shears to simulate mechanical damage from typhoon since only leaf stalks were left when kiwifruit vines were damaged by typhoons. Kiwifruit vines were defoliated from July 15 to October 14 with one monthintervals and degrees of defoliation were 0, 25, 50, 75 and 100%. All experiments were conducted in the rain shelter and replicated at least five times. Defoliation in July 15 resulted in a high regrowth ratio of 20-40% regardless of degree of defoliation but that in August 16 showed only 5.8% of regrowth ratio in the no defoliation treatment; however, more than 25% of defoliation in August 16 showed 17-23% of regrowth ratio. In September 15, regrowth ratio decreased further to less than 10% in all treatments and no regrowth was observed in October 14. Percent bud break of all defoliation treatments were not significant in comparison to 64.7% in no defoliation except for 42.1% and 42.9% in 100% defoliation in July 15 and August 16, respectively. Floral shoot in the no defoliation treatment was 70.2% and defoliation of 50% or less resulted in the same or increased floral shoot ratio in July 15, August 16, and September 15; however, defoliation in October 14 showed no difference in all treatments. In flower number per floral shoot, 2-3 flowers appeared in no defoliation and only 1 flower was observed when the vines were defoliated more than 50% in July 15 and September 15. In October 14, contrary to the floral shoot ratio, flower number decreased with increased defoliation. CONCLUSION(S): Therefore, it is suggested that dormancy of 'Goldrush' axillary buds, was started in August and completed in October. The effect of defoliation on bud break of axillary buds the following year was insignificant, except for 100% defoliation in July 15 and August 16. From July 15 to September 15, floral bud ratio was significantly reduced when more than 50% of leaves were defoliated compared to no defoliation. Also, the number of flowers per flower-bearing shoot the following year decreased by less than 50% when compared to no defoliation, and this decrease was more prominent in September 15 than July 15 and August 16.

Growth and Flowering of Standard Chrysanthemums according to the Light Source and Light Quality in Night Break Treatment (광중단 처리에 있어서 광원 및 광질이 스탠다드 국화의 생육 및 개화에 미치는 영향)

  • Kwon, Young Soon;You, Bong Sik;Jung, Jae A;Park, Sang Kun;Shin, Hak Ki;Kil, Mi Jung
    • Journal of Bio-Environment Control
    • /
    • v.23 no.4
    • /
    • pp.263-268
    • /
    • 2014
  • This research was performed to investigate the effect of light source and light quality in night break treatment on the growth and flowering of standard chrysanthemum. It was processed 4 hours (22:00-02:00) night break using LED 590, 610, 630, 660, 680nm and fluorescent lamp (mixed light of 480+540+610nm) in standard chrysanthemum 'Baekma' and 'Jinba' for 40 days from transplanting. The days to flower budding from short-day treatment of 'Baekma' were the longgest at fluorescent treatment (21.3 days) and were the shorttest at LED 590nm treatment (15.8 days) among all treatments. The days to flower budding from short-day treatment of 'Jinba' was longger with 18.0 days, 17.8 days, and 17.7 days at the fluorescent, LED 610nm, and 660nm treatments. And it was the shortest with 15.1 days in LED 590nm treatment. Similarly, the days to flowering from short-day treatment of 'Baekma' was the longgest with 56.9 days at fluorescent treatment, and was the shorttest in 51.6 days about LED 590 nm treatment. The days to flowering from short-day treatment of 'Jinba' was longer at fluorescent (56.0 days) and LED 660nm (56.7 days) treatments and was shortest at LED 590nm (52.9 days) among all treatments. Therefore, inhibition of flower bud initiation and flowering were the most effective under fluorescent treatment in case of 'Baekma', and fluorescent and LED 660nm treatments in case of 'Jinba'. The length and weight of cut flower of 'Baekma' and 'Jinba' were most excellent in fluorescent treatment in which the floral differentiation suppression effect was the best. Consequently, as to the growth and flowering of standard chrysanthemum, the treatment which was suitable as the light source and light quality for night break is regarded as the fluorescent lamp, and also under LED 660nm up to a certain level.

Extending the Vase Life of Cut Iris 'Blue Magic' Flowers by 1-Methylcyclopropene (1-Methylcyclopropene 처리에 의한 아이리스 '블루매직'의 절화수명 연장)

  • Kim, Young-A;Lee, Jong-Suk;Park, Jong-Su;Lee, Poong-Ok
    • Horticultural Science & Technology
    • /
    • v.28 no.6
    • /
    • pp.985-989
    • /
    • 2010
  • This experiment was conducted to clarify the effects of 1-methylcyclopropene (1-MCP) on vase life of cut 'Blue Magic' iris. Pretreatment for 4 h with concentrations of 500 nL and 1000 nL 1-MCP, an inhibitor of ethylene action, inhibited the wilting and inrolling response of cut iris. The vase life of iris flowers of 500 nL or 1000 nL 1-MCP treatment was prolonged to 0.5 day compared to those held in distilled water (control). Vase life of iris showed no significant difference between $3{\mu}L{\cdot}L^{-1}$ ethylene exposure after 1-MCP treatment and control. 1-MCP treatment inhibited inrolling and increased fresh weight, water uptake, and water balance. The increase of fresh weight was high in 500 nL 1-MCP treatment and water uptake was increased by 1000 nL 1-MCP. Especially, iris flower without 1-MCP treatment dramatically decreased the water uptake as compared to the control for four or five days. Water balance of iris flowers held in water was changed to minus value faster than those with pretreatment of 1-MCP.

Effect of Dye-absorbing Duration and Environmental Conditions on Quality of Preserved Leaves in Eucalyptus cinerea (염료 흡수기간 및 환경조건이 유칼립투스의 보존엽 품질에 미치는 영향)

  • Lim, Young Hee;Kim, So Eun;Oh, Wook
    • Horticultural Science & Technology
    • /
    • v.32 no.3
    • /
    • pp.390-399
    • /
    • 2014
  • The objective of this study was to establish a processing technology for preserved leaves based on the results from the examination of the optimal period and condition for dye-absorbing treatment for Eucalyptus cinerea F. Mull. ex Benth. (silver dollar eucalyptus) being used frequently as plant material for flower design. Cut foliages of E. cinerea with uniformly matured leaves were cut into 20 cm lengths and their lower stem parts were placed in dye solution in growth chambers with different temperatures (10, 20, 30, and $40^{\circ}C$), vapor pressure deficits (VPD; 0.23, 0.70, 1.17, and 1.61 kPa), and photoperiods (0, 6, 12, 24 hours) for 3, 6, 9, and 12 days, and then dried in a room of $20^{\circ}C$ for three days. Lower temperature during preserving dye treatment reduced the changes in leaf color compared with fresh leaves and decreased ${\Delta}E$ value. Especially, high temperature increased red degree (a) and decreased yellow degree (b) due to browning. Lower VPD reduced the change in leaf color compared with fresh leaves and decreased ${\Delta}E$ value. Shorter photoperiod reduced the change in leaf color compared with fresh leaves and decreased ${\Delta}E$ value. The ${\Delta}E$ value increased with increasing absorbing duration under three environmental conditions. The flexibility of stem and leaves after dipped into preserving dye solution and dried for 3 days increased with decreasing temperature, VPD and dipping duration. Therefore, the optimal environment condition for dye treatment was 0.23-0.70 kPa VPD at $10-20^{\circ}C$ in the darkness, and the optimal and economical duration was 3 days. These conditions reduced the speed of water loss by decreasing transpiration, so yellowing or browning by rapid water loss deteriorated the quality of preserved leaves out of these ranges.

Reduction of Stem Cavity and Improvement of Flower Quality in Chrysanthemum 'Baekma' by Hydroponic Culture (양액재배에 의한 국화 '백마'의 줄기공동 경감과 절화품질 향상)

  • Hwang, In Taek;Cho, Kyung Chul;Kim, Hee Gon;Ki, Gwang Yeon;Yoon, Bong Ki;Kim, Jung Guen;Lim, Jin Hee;Choi, Sung Ryul;Shin, Hak Ki
    • FLOWER RESEARCH JOURNAL
    • /
    • v.17 no.4
    • /
    • pp.251-255
    • /
    • 2009
  • This study was conducted to investigate effect of ionic strength and feeding times of a nutrient solution on reduction of stem cavity size and improvement of flower quality in chrysanthemum 'Baekma'. A nutrient solution was applied with different strengths at three stages, namely, transplanting, budding, and flowering. The solution EC was adjusted as 1.61.82.0, 1.81.81.8, 1.82.01.8, and $2.02.02.0dS{\cdot}m^{-1}$ in four treatments. Feeding frequency per a day were 4 times for 12 min., 8 times for 6 min., 12 times for 4 min., and 18 times for 2.7 min. each. Cut flower length as affected by different strengths of a nutrient solution was the greatest in the plot of EC $2.02.02.0dS{\cdot}m^{-1}$. However number of leaves, stem diameter, and leaf size were greater in EC $1.82.01.8dS{\cdot}m^{-1}$ than in other treatments. Also, petal number of petals was the greatest and stem cavity size was the smallest in the plot of EC $1.81.81.8dS{\cdot}m^{-1}$. Plant height, number of leaves, stem diameter, leaf size were greater in the plot with 12 times feed ing per a day. number of petal was most in the plot with 8 times feeding per day, while stem cavity size was the smallest in the plot with 12 times feed ing per a day. Therefore, the better plant growth, the smaller stem cavity size.