• 제목/요약/키워드: Cushion time

Search Result 60, Processing Time 0.031 seconds

Comparison of Cushion Performance on Parameter Changes in High Speed Pneumatic Cylinder Driving System (공기압 실린더 고속 구동시스템에서 파라미터 변화에 따른 쿠션성능 비교)

  • Kim, Do Tae;Jang, Zhong Jie
    • Journal of Drive and Control
    • /
    • v.12 no.4
    • /
    • pp.54-59
    • /
    • 2015
  • Due to the tendency to use high speed pneumatic cylinders to improve productivity, cushioning devices are adopted to decelerate the piston motion of pneumatic cylinders to reduce noise, vibration, and impact. This paper presents a comparison of the cushion characteristics of a high speed pneumatic cylinder with a relief valve type cushioning device. The system parameters selected are the damping coefficient, Coulomb friction, heat transfer coefficient, and cracking pressure of the relief valve in the air cushioning device. The integral of the time multiplied square error (ITSE) is used to quantitative measure the cushioning performance to assess the effect of varying these. The cushioning performance achieved good results when the ITSE is a minimum value. In a comparison of the piston displacement and velocity with the variations in system parameters, the heat transfer coefficients are not as significantly affected as the other. Also, the cracking pressure of the relief valve is mainly affected by the pressure and temperature in the cushion chamber.

Structural Strength Analysis at Cushion Frame and Back Frame of Automotive Seat (자동차 시트 쿠션 프레임 및 백 프레임의 구조 강도 해석)

  • Kim, Sung-Soo;Kim, Key-Sun;Choi, Doo-Seuk;Park, Sang-Heup;Kim, Sei-Hwan;Cho, Jae-Ung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.11
    • /
    • pp.4956-4962
    • /
    • 2012
  • Among the various parts of automobile, automotive seat is the most fundamental item that ride comfort can be evaluated as the direct contact part with human body. Automotive seat must have the sufficient rigidity and strength at the same time with ride comfort. In this study, cushion frame and back frame at car seat are modelled with 3D. There are structural simulation analyses about 3 kinds of tests on torsion strength, vertical load strength and back frame strength. In the analysis result, the initial total deformation and the permanent total deformation has the maximum values of 5.4821 mm and 0.02539mm respectively at the torsion strength test of cushion frame. Total deformations at front and rear end parts of cushion frame become the values of 2.1159mm and 0.0606mm respectively at the test of vertical load strength of cushion frame. In case of more than this load, the maximum value of total deformation also becomes 3.1739mm. The maximum value of total deformation becomes 0.18634mm at 3 kinds of the strength tests on back frame. By the study result of no excessive deformation and no fracture cushion frame and back frame at automotive seat, the sufficient rigidity and strength to guarantee the safety of passenger can be verified.

A New Method for Unconstrained Pulse Arrival Time (PAT) Measurement on a Chair

  • Kim Ko-Keun;Chee Young-Joon;Lim Yong-Gyu;Choi Jin-Wook;Park Kwang-Suk
    • Journal of Biomedical Engineering Research
    • /
    • v.27 no.3
    • /
    • pp.83-88
    • /
    • 2006
  • A new method of measuring pulse arrival time (PAT), which is usually used for the estimation of systolic blood pressure, in an unconstrained manner using a chair, is proposed. The capacitive-coupled ECG (CC-ECG) measurement system and the air cushion with balancing tubes system were used for unconstrained PAT measurement. Firstly, the correlation between the standard PAT (S-PAT) from the photoplethysmography (PPG) and the PAT measured in an unconstrained manner (U-PAT) was evaluated. It was observed that U-PAT, which is the time delay from the R-peak of ECG to the steepest decent point of air cushion pressure wave, is significantly correlated with the S-PAT. Secondly, systolic blood pressure (SBP) measured by the radial tonometer is compared to the U-PAT. The ten-beat averaged U-PAT removed respiration effects and demonstrated a high intra-subject correlation with SBP in all participants. Finally, the tonometry SBP was estimated from these U-PAT values for one participant intermittently during half a day.

A Simulation Study on the Analysis of Optimal Gas Storage System of the Depleted Gas Reservoir (고갈가스전에의 적정 가스저장시스템 분석을 위한 시뮬레이션 연구)

  • Lee, Youngsoo;Choi, Haewon;Lee, Jeonghwan;Han, Jeongmin;Ryou, Sangsoo;Roh, Jeongyong;Sung, Wonmo
    • Korean Chemical Engineering Research
    • /
    • v.45 no.5
    • /
    • pp.515-522
    • /
    • 2007
  • In this study we have attempted to evaluate the technical feasibility of "BB-HY", which is depleted gas reservoir as a gas storage field, using the commercial compositional simulator "ECLIPSE 300". The "BB-HY" reservoir has an initial gas in place of 143 BCF which is relatively small, and its porosity and permeability are 19.5% and 50 md, respectively. For "BB-HY" gas reservoir, we have performed a feasibility analysis by investigating the cushion gas (or working gas), converting time to gas storage field, operation cycle, number of wells and the possible application of horizontal borehole as well. From the simulation results, it was found that the amount of cushion gas in "BB-HY" reservoir is required at least 50% of IGIP in order to operate stably as gas storage field. When one produces gas for longer time and hence the remaining gas in reservoir is less than optimal cushion gas, no technical problem was occurred as long as additional cushion gas is injected up to the optimal cushion gas. In the case of changing the operation cycle into producing gas for three months during winter season from producing five months, the result shows that either the cushion gas should be greater than 60% or the more number of wells should be drilled. Meanwhile, from the results of sensitivity analysis for the number of wells, in cases of operating six or eight vertical wells, the stable reproduction of the injected gas can not be possible in "BB-HY" gas reservoir since the remaining gas in reservoir is increased. Therefore, in "BB-HY" reservoir, at least ten vertical wells should be drilled for the stable operation of gas. This time, when three horizontal wells are additionally drilled including the existing two vertical wells, it was found that the operation of injection and reproduction of gas is relatively stable in "BB-HY" gas reservoir.

Computer Simulation and Modeling of Cushioning Pneumatic Cylinder (공기압 실린더의 쿠션특성에 관한 모델링 및 컴퓨터 시뮬레이션)

  • 이상천
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.6
    • /
    • pp.794-805
    • /
    • 1999
  • Pneumatic cushioning cylinders are commonly employed for vibration and shock control. A mathematical simulation model of a double acting pneumatic cushioning cylinder designed to absorb shock loads is presented which is based on the following assumptions; ideal equation of state isentropic flow through a port conservation of mass polytropic thermodynamics single degree of freedom piston dynamics and energy equivalent linear damping. These differential equation can be solved through numerical integration using the fourth order Runge-Kutta method. An experimental study was conducted to validate the results obtained by the numerical integra-tion technique. Simulated results show good agreement with experimental data. The computer simulation model presented here has been extremely useful not only in understanding the has been extremely useful not only in understanding the basic cushioning but also in evaluating different designs.

  • PDF

Do the Types of Seat Surface influence the pulmonary Functions during Prolonged Sitting?

  • Son, SungMin
    • The Journal of Korean Physical Therapy
    • /
    • v.32 no.1
    • /
    • pp.34-38
    • /
    • 2020
  • Purpose: The purpose of this study was to identify the effects of the types of seat surface (static or dynamic seat surface) on the pulmonary functions during prolonged sitting. Methods: Thirty-four participants (20 males and 14 females) were recruited, and distributed randomly into dynamic prolonged sitting (DPS, n=17) and static prolonged sitting (SPS, n=17) groups. The DPS group was seated on a chair with a dynamic air cushion, and the SPS group was seated on a chair without a dynamic air cushion. The pulmonary function was assessed before sitting, and after participants had been seated for one hour. The pulmonary function [forced vital capacity (FVC), forced expiratory volume in 1 second (FEV1), and Peak expiratory flow (PEF)] was measured using a spirometer. Results: Statistical analyses revealed significant differences in the time x group interactions of FVC, FEV1, PEF, and FEV1/FVC. The DPS group were significantly different in FVC, FEV1, PEF, and FEV1/FVC after prolonged sitting for one hour, compared to the SPS group (p<0.05). Conclusion: These findings suggest that dynamic sitting can prevent a decrease in the physiological function, such as pulmonary functions, rather than static sitting during prolonged sitting.

The Study on the Methodology for Naval Ship(Craft Air Cushion) Vulnerability Analysis (함정(공기부양정) 취약성 분석방법 연구)

  • Choi, Bong-Wan;Lee, Chan-Sun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.6
    • /
    • pp.1106-1112
    • /
    • 2010
  • One of the considerations in weapon systems procurement is the objective of maximizing the current force. Also, offensive effects, rather than defense are valued in weapons system development and procurement. Especially, the survivability of a naval ship is equally important as the offensive effect of onboard weapons. In case of naval ships, development of attack tactics and research regarding damage minimization must be conducted through live fire exercise against actual targets in order to minimize damage from the enemy. However, it is difficult to conduct such adequate measures due to realistic limitations such as time and budget in order to verify and calculate a weapon system's attack and damage effects along with the lack of practical studies in this subject despite numerous interests. Research are being conducted utilizing M&S to estimate attack effects and study damages due to such reason, but the lack of authoritative data and development ability are limiting calculation of reliable results. Therefore, this study will propose a measure to increase survivability of a weapon system(ship/vessel) utilizing research of vulnerability from enemy attacks analysis method against a naval ship(Craft Air Cushion).

Apparatus for massaging of the principle ni,n of the human body in cushion for chair (노화방지용 좌욕기 장치개발)

  • 박노국
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2003.05a
    • /
    • pp.143-147
    • /
    • 2003
  • This study is to develop a device of bath-seat with massage which is attached to bath-seat and is able to sustain massage on perineal region and anus effectively. And also develop new programmed driving-seat that is able to protect drowsiness. This seat is operated easily by user controlling time period (eg. 30 minutes or 60 minutes) of vibration. During the vibration, user can make a choice of making n sound which is proved as a better effects for concentration and comfort.

  • PDF

Automotive Airbag Inflator Analysis Using Measured Properties of Modern Propellants (추진제 특성을 이용한 에어백 인플레이터 성능 제어에 대한 실험 및 해석에 대한 연구)

  • Seo, Young-Duk;Kim, Gun-Woo;Hong, Bum-Suk;Kim, Jin-Ho;Chung, Suk-Ho;Yoh, Jai-Ick
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.6
    • /
    • pp.53-62
    • /
    • 2010
  • An airbag is composed of housing assembly, door assembly, cushion assembly, and an inflator. The inflator is the essential part that generates gas for airbag. When an airbag is activated, it effectively absorbs the crash energy of the passenger by inflating a cushion. In this study, tank tests were performed with newly synthesized propellants with various compositions, and the results are compared with the numerical results. In the simulation of inflator, a zonal model has been adopted which consisted of four zones of flow regions: combustion chamber, filter, gas plenum, and discharge tank. Each zone was described by the conservation equations with specified constitutive relations for gas. The pressure and temperature of each zone of the inflator were calculated and analyzed and the results were compared with the tank test data. In the zone of discharge tank the pressure quickly rose, the pattern of pressure curve was very similar to the pressure curve of real test. And in zone 1 & 2 & 3 the mass of products was increased and decreased with time. In zone 4, the mass of products was increased with time like real inflator. From the similarity of pressure curve in zone 4 and closed bomb calculation the modeled results are well correlated with the experimental values.

Reliability and Validity of the Measurement of Pelvic Movement in Low Back Pain Patients using Cushion Sensor in Sitting Position (앉은 자세에서 방석센서를 이용한 요통환자 골반가동성 측정의 신뢰도와 타당도)

  • Jung, Seung-Hwa;Park, Dae-Sung
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.15 no.2
    • /
    • pp.83-91
    • /
    • 2020
  • PURPOSE: Postural and structural asymmetry due to muscle imbalances around the lower back and pelvis are the causes of back pain. Muscle imbalances in patients with chronic low back pain affect the pelvic tilt and movement, and it is necessary to assess the pelvic movement ability using the appropriate tools to determine the mediating effects of lower back pain. This paper reports the reliability and validity of the Sensbalance Therapy Cushion (STC) for pelvic movement and proprioception. METHODS: In this study, the Wii balance board (WBB) was used as a golden standard for pelvic movement measurements. FABQ, KODI, Myovision, and Pelvic movement were measured in 50 patients with chronic low back pain. The correlation between the lower-back muscle activity and pelvic movement was checked. The pelvic movement parameter was measured twice to determine the intra-rater reliability. RESULTS: The STC showed high test-retest reliability in the pelvic tilt measurements (ICC = .672 - .809). The test-retest reliability of proprioception measurements (ICC = .588 - .859) and reaction time measurements (ICC = .542 - .836) were also high. The relationship between the WBB and STC showed a significant positive correlation with the pelvic tilt test (p < .01). The posterior pelvic tilt and lower-back muscle activity showed a significant negative correlation (p < .01). The pelvic left tilt and lower-back muscle activity showed a significant negative correlation (p < .05). CONCLUSION: The results revealed the high reliability and validity of the STC. Therefore, the STC can be used as an objective measuring device for evaluating pelvic tilt, proprioception, and reaction time in low back pain patients.