• Title/Summary/Keyword: Curved lane

Search Result 42, Processing Time 0.024 seconds

Driving Performance of Adaptive Driving Controls using Drive-by-Wire Technology for People with Disabilities

  • Kim, Younghyun;Kim, Yongchul
    • Journal of the Ergonomics Society of Korea
    • /
    • v.35 no.1
    • /
    • pp.11-27
    • /
    • 2016
  • Objective: The purpose of this study was to develop and evaluate high technology adaptive driving controls, such as mini steering wheel-lever system and joystick system, for the people with physical disabilities in the driving simulator. Background: The drivers with severe physical disabilities have problems in operation of the motor vehicle because of reduced muscle strength and limited range of motion. Therefore, if the remote control system with driver-by-wire technology is used for adaptive driving controls for people with physical limitations, the disabled people can improve their quality of life by driving a motor vehicle. Method: We developed the remotely controlled driving simulator with drive-by-wire technology, e.g., mini steering wheel-lever system and joystick system, in order to evaluate driving performance in a safe environment for people with severe physical disabilities. STISim Drive 3 software was used for driving test and the customized Labview program was used in order to control the servomotors and the adaptive driving devices. Thirty subjects participated in the study to evaluate driving performance associated with three different driving controls: conventional driving control, mini steering wheel-lever controls and joystick controls. We analyzed the driving performance in three different courses: straight lane course for acceleration and braking performance, a curved course for steering performance, and intersections for coupled performance. Results: The mini steering wheel-lever system and joystick system developed in this study showed no significant statistical difference (p>0.05) compared to the conventional driving system in the acceleration performance (specified speed travel time, average speed when passing on the right), steering performance (lane departure at the slow curved road, high-speed curved road and the intersection), and braking performance (brake reaction time). However, conventional driving system showed significant statistical difference (p<0.05) compared to the mini steering wheel-lever system or joystick system in the heading angle of the vehicle at the completion point of intersection and the passing speed of the vehicle at left turning. Characteristics of the subjects were found to give a significant effect (p<0.05) on the driving performance, except for the braking reaction time (p>0.05). The subjects with physical disabilities showed a tendency of relatively slow acceleration (p<0.05) at the straight lane course and intersection. The steering performance and braking performance were confirmed that there was no statistically significant difference (p>0.05) according to the characteristics of the subjects. Conclusion: The driving performance with mini steering wheel-lever system and joystick control system showed no significant statistical difference compared to conventional system in the driving simulator. Application: This study can be used to design primary controls with driver-by-wire technology for adaptive vehicle and to improve their community mobility for people with severe physical disabilities.

Study on the Operational Test Scenarios for Assessment of Unmanned Ground Vehicle's Operation Suitability (UGV의 운용적합성 평가를 위한 운용 시험 시나리오 연구)

  • Gyumin Kang;Kyungsu Yi
    • Journal of Auto-vehicle Safety Association
    • /
    • v.15 no.4
    • /
    • pp.6-15
    • /
    • 2023
  • This paper develops scenarios to evaluate the safety performance of Unmanned Ground Vehicle on military circumstances. The scenarios were created using Pegasus Project 6-layer format. These scenarios consist of straight road, curved road, merging road and crossroad. We adapt these scenarios to unpaved road. The characteristics of unpaved roads were divided into roughness, friction coefficient and road frequency. This adaption is validated via computer simulation. We observe the scan lines of vehicle become tangled of the straight road that make the cognitive abilities of the vehicle low and the lane-keeping is unable when vehicles entering curved off-roads over 40 km/h. The developed scenarios will contribute to enhancing stability from the perspective of introducing autonomous driving technology to Korean military.

Analysis of highway reflection noise reduction using transparent noise barrier types

  • Lee, Jaiyeop;Kim, Ilho;Chang, Seoil
    • Environmental Engineering Research
    • /
    • v.20 no.4
    • /
    • pp.383-391
    • /
    • 2015
  • Transparent type noise barrier is a desirable facility since it provides a secure view to drivers and passengers. However, reflection from this type of barrier could annoy dwellers on the sides of the road. To reduce reflection noise by transparent type barrier, modification can be made to the shapes on the front side and hence get effects by distortion of sound transmission. To achieve this, we have conducted simulation by which the effects of patterned screens of noise barrier on high-ways were investigated. The reduction effects of reflected sounds were evaluated for swelling, swelling with curved, rectangular and V-shaped screen type barriers, compared to the planar panel. The emitting noise was generated by 6-lane road and the patterned noise barriers had shown the reduction effects, especially in swelling and swelling with curved type for middle height dwellers, and the V-shaped screen type for higher elevation dweller. The swelling-type showed a decrease of 0.7~1.2 dB, performing the best diminution effect among the tested noise barriers.

Ventilation Analysis According to Jet Fan Location in Curved Long Road Tunnel (제트 팬 위치에 따른 곡선형 장대터널의 환기해석)

  • Byun, Ju-Suk;Kang, Shin-Hyung;Kim, Ji-Sung;Lee, Jin-Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.9
    • /
    • pp.669-678
    • /
    • 2007
  • In this study, the ventilation characteristics is investigated numerically of the longitudinal ventilation method in the curved long road tunnel. Numerical work has been conducted for the jet fan location by utilizing the commercial finite-volume code, FLUENT. Configuration of the tunnel is three-lane, 1600 m long, $120m^2$ in area, 3000 m curvature radius. The velocity profile, distribution of mono-dioxide carbon and flow rate of air are examined in the tunnel. Through the analysis, it is found that the difference of ventilation flow rate Is a little by the jet fan location, but tunnel outlet setup (CASEIII) of jet fans is the most efficient concerned with CO concentration.

Multiple Vehicle Recognition based on Radar and Vision Sensor Fusion for Lane Change Assistance (차선 변경 지원을 위한 레이더 및 비전센서 융합기반 다중 차량 인식)

  • Kim, Heong-Tae;Song, Bongsob;Lee, Hoon;Jang, Hyungsun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.2
    • /
    • pp.121-129
    • /
    • 2015
  • This paper presents a multiple vehicle recognition algorithm based on radar and vision sensor fusion for lane change assistance. To determine whether the lane change is possible, it is necessary to recognize not only a primary vehicle which is located in-lane, but also other adjacent vehicles in the left and/or right lanes. With the given sensor configuration, two challenging problems are considered. One is that the guardrail detected by the front radar might be recognized as a left or right vehicle due to its genetic characteristics. This problem can be solved by a guardrail recognition algorithm based on motion and shape attributes. The other problem is that the recognition of rear vehicles in the left or right lanes might be wrong, especially on curved roads due to the low accuracy of the lateral position measured by rear radars, as well as due to a lack of knowledge of road curvature in the backward direction. In order to solve this problem, it is proposed that the road curvature measured by the front vision sensor is used to derive the road curvature toward the rear direction. Finally, the proposed algorithm for multiple vehicle recognition is validated via field test data on real roads.

A Review of Proximity Assessment Measurements According to Fairway Patterns and Ship Size (항로형태 및 선박크기에 따른 근접도 평가기법에 관한 고찰)

  • Kim, Sung-Cheol;Kwon, Yu-Min
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.7
    • /
    • pp.783-790
    • /
    • 2017
  • An acceptable proximity assessment collision probability is widely considered to be less than $10^{-4}$ in maritime traffic safety audit schemes. In the 1970s, Fujii, Macduff and colleagues introduced various models for collision probability of aberrancy in the community. Although existing studies ensured acceptable proximity collision probability, around $10^{-4}$, they were constrained by assumptions. A lack of support for the proximity probability criterion has been investigated in this study for practical use. The appropriate proximity probability for different size vessels in both straight and curved lanes has been analyzed based on GICOMS data. As a result, reasonable proximity collision probabilities were determined for various vessel traffic conditions. Accordingly, necessary improvements in the maritime traffic system have been suggested in consideration for various maritime traffic situations and conditions.

Autonomous Traveling of Unmanned Golf-Car using GPS and Vision system (GPS와 비전시스템을 이용한 무인 골프카의 자율주행)

  • Jung, Byeong Mook;Yeo, In-Joo;Cho, Che-Seung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.6
    • /
    • pp.74-80
    • /
    • 2009
  • Path tracking of unmanned vehicle is a basis of autonomous driving and navigation. For the path tracking, it is very important to find the exact position of a vehicle. GPS is used to get the position of vehicle and a direction sensor and a velocity sensor is used to compensate the position error of GPS. To detect path lines in a road image, the bird's eye view transform is employed, which makes it easy to design a lateral control algorithm simply than from the perspective view of image. Because the driving speed of vehicle should be decreased at a curved lane and crossroads, so we suggest the speed control algorithm used GPS and image data. The control algorithm is simulated and experimented from the basis of expert driver's knowledge data. In the experiments, the results show that bird's eye view transform are good for the steering control and a speed control algorithm also shows a stability in real driving.

An Analytical Study of the Effect of Inclined Angle of Road on Turn-over Accident of a High-speed Coach running on a Curved Road under Cross-wind Condition (횡풍이 작용하는 속도로의 회전구간에서 도로의 편경사각이 주행차량의 전복사고에 미치는 영향에 관한 분석연구)

  • Park, Hyeong-Su
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.1
    • /
    • pp.373-381
    • /
    • 2017
  • Kyeonggi Provincial Government is considering double decker bus service to solve the problem of heavy rush hour traffic. However, the height-to-width ratio is more than 1.16 times larger than that of a general high-speed single decker bus, and the center of gravity is higher. This could cause driving stability problems, such as turnover and breakaway from the lane, especially under strong side-wind conditions at high speed. In this numerical study, the driving characteristics of a model double decker bus were reviewed under side-wind and superelevation conditions at high driving speed. The rolling, pitching, and yawing moment of the model bus were calculated with CFD numerical simulation, and the results were compared to the recovery angular moments of the model bus to evaluate the dynamic stability under given driving conditions. As the model vehicle moves on a straight level road, it is stable under any side-wind conditions. However, on a curved road under side-wind conditions, it could reach unstable conditions dynamically. There is a chance that the bus will turn over when it moves on a curved road with a radius of gyration less than 100 m under side-wind (15 m/s). However, there is a very small chance of breakaway from the lane under any driving conditions.

A study on stand-alone autonomous mobile robot using mono camera (단일 카메라를 사용한 독립형 자율이동로봇 개발)

  • 정성보;이경복;장동식
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.4 no.1
    • /
    • pp.56-63
    • /
    • 2003
  • This paper introduces a vision based autonomous mini mobile robot that is an approach to produce real autonomous vehicle. Previous autonomous vehicles are dependent on PC, because of complexity of designing hardware, difficulty of installation and abundant calculations. In this paper, we present an autonomous motile robot system that has abilities of accurate steering, quick movement in high speed and intelligent recognition as a stand-alone system using a mono camera. The proposed system has been implemented on mini track of which width is 25~30cm, and length is about 200cm. Test robot can run at average 32.9km/h speed on straight lane and average 22.3km/h speed on curved lane with 30~40m radius. This system provides a model of autonomous mobile robot adapted a lane recognition algorithm in odor to make real autonomous vehicle easily.

  • PDF

Speed Error Compensation of Electric Differential System Using Neural Network (신경망을 이용한 전기차동차의 속도오차 보상)

  • Ryoo, Young-Jae;Lee, Ju-Sang;Lim, Young-Cheol;Chang, Young-Hak;Kim, Eui-Sun;Moon, Chae-Joo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.1
    • /
    • pp.1205-1210
    • /
    • 2001
  • This paper describes a methodology using neural network to compensate the nonlinear error of deriving speed for electric differential system included in electric vehicle. An electric differential system which drives each of the left and right wheels of the electric vehicle independently. The electric vehicle driven by induction motor has the nonlinear speed error which depends on a steering angle and speed command. When a vehicle drives along a curved road lane, the speed unblance of inner and outer wheels makes vehicles vibration and speed reduction. To compensate for the speed error, we collected the speed data of the inner wheel and outer wheel in various speed and the steering angle data by using an manufactured electric vehicle and the real system. According to the analysis of the acquisited data, we designed the differential speed control system based on a speed error compensator using neural network.

  • PDF