• 제목/요약/키워드: Curved Steel Structure

검색결과 41건 처리시간 0.021초

PSC 궤도빔의 가설공법에 대한 검토 (A Study On The Construction Methods In PSC Rail Beams)

  • 안용모
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2010년도 춘계학술대회 논문집
    • /
    • pp.1293-1299
    • /
    • 2010
  • Daegu urban railroad line 3 is introduced with straddle-type monorail system within the country at the first time. This system is long line with 24km in total length which has not the results of construction in Korea. The rail beam of monorail bridge to be constructed/ installed in the city is adopted on the basis of the PSC rail beam. It is required to apply the steel rail beam at rapid/ curved line parts or location to be required the long span bridge as passing river and intersection. The composition of span bridge is various and the height of bridge is change with each section and exist the different curve radius due to all section is passes in the city. The rail beam shall be considered the ground conditions and then consider the construction methods. It is analyzed to construction period of PSC rail beam to be linked with period of infrastructure construction and construction of steel rail beam, structure construction of station etc. It is compared to crane construction methods and launching girder as alternative construction methods and propose to upper construction methods which is superior in economic and construction.

  • PDF

연속주조된 강재 슬래브 표면의 Oscillation Mark 형성에 관한 평가 (An Assessment on the Formation of Oscillation Mark of the Continuously Casted Steel Slabs)

  • 박태호;김지훈;최주;예병준
    • 한국주조공학회지
    • /
    • 제23권5호
    • /
    • pp.257-267
    • /
    • 2003
  • In early solidification during the continuous casting of steel slabs, the formation of oscillation marks on the surface of slabs was mainly affected by carbon contents and casting conditions. The control of oscillation mark is required for the HCR(Hot Charged Rolling) process because the deep oscillation marks seriously deteriorate the surface qualities of steel slabs. The metallographic study has revealed that the oscillation mark can be classified principally according to the presence or absence of a small 'subsurface hook' and the depth of the oscillation marks in the subsurface structure at the basis of individual oscillation marks. The subsurface hook of oscillation marks was either straight or curved. When the amount of overflow was small and the subsurface hook was formed in the top of oscillation marks, the subsurface hook was straight and the oscillation mark was shallow. The oscillation marks without subsurface hook have small early solidification shell and were formed wide. The actual negative strip time$(t_N)$ was changed by the effect of meniscus level fluctuation Therefore irregular early solidification shell and oscillation mark were formed.

Damage inspection and performance evaluation of Jilin highway double-curved arch concrete bridge in China

  • Naser, Ali Fadhil;Zonglin, Wang
    • Structural Engineering and Mechanics
    • /
    • 제39권4호
    • /
    • pp.521-539
    • /
    • 2011
  • Jilin highway concrete bridge is located in the center of Jilin City, which is positioned in the middle part in Jilin Province in the east north of China. This bridge crosses the Songhua River and connects the north and the south of Jilin City. The main purpose of damages inspection of the bridge components is to ensure the safety of a bridge and to identify any maintenance, repair, or strengthening which that need to be carried out. The damages that occur in reinforced concrete bridges include different types of cracks, scalling and spalling of concrete, corrosion of steel reinforcement, deformation, excessive deflection, and stain. The main objectives of this study are to inspect the appearance of Jilin highway concrete bridge and describe all the damages in the bridge structural members, and to evaluate the structural performance of the bridge structure under dead and live loads. The tests adopted in this study are: (a) the depth of concrete carbonation test, (b) compressive strength of concrete test, (c) corrosion of steel test, (d) static load test, and (e) dynamic load test. According to the damages inspection of the bridge structure appearance, most components of the bridge are in good conditions with the exception arch waves, spandrel arch, deck pavement of new arch bridge, and corbel of simply supported bridge which suffer from serious damages. Load tests results show that the deflection, strain, and cracks development satisfy the requirements of the standards.

지진하중을 받는 I형 곡선거더 단경간 교량의 대리모델 기반 전역 민감도 분석 (Surrogate Model-Based Global Sensitivity Analysis of an I-Shape Curved Steel Girder Bridge under Seismic Loads)

  • 전준태;손호영;주부석
    • 한국재난정보학회 논문집
    • /
    • 제19권4호
    • /
    • pp.976-983
    • /
    • 2023
  • 연구목적: 지진하중을 받는 교량 구조물의 동적 거동은 지진파의 특성 혹은 재료 및 기하학적 특성과 같은 많은 불확실성에 영향을 받는다. 하지만 모든 불확실성 인자가 교량 구조물의 동적 거동에 중요한 영향을 미치진 않는다. 영향성이 낮은 불확실성 인자까지 고려한 확률론적 내진성능 평가는 많은 계산비용이 요구되기 때문에 교량의 동적 거동에 미치는 영향을 고려하여 불확실성 인자는 식별되어야 한다. 따라서 본 연구는 I형 곡선 거더를 갖는 단경간 교량의 동적 거동에 영향을 미치는 주요 매개변수를 식별하기 위해 전역민감도 분석을 수행하였다. 연구방법: 지진파의 불확실성과 곡선 교량의 재료 및 기하학적 불확실성을 고려하여 유한요소 해석을 수행하였으며 해석결과를 기반으로 대리모델을 작성하였다. 결정계수와 같은 성능평가지료를 이용하여 대리모델을 평가하였으며 최종적으로 대리모델 기반의 전역 민감도 분석을 수행하였다. 연구결과: 지진하중을 받는 I형 곡선 거더의 응력응답에 가장 큰 영향을 미치는 불확실성 인자는 최대지반가속도(PGA), 교각의 높이(h), 강재의 항복응력(fy) 순으로 나타났다. PGA, h, fy의 주효과 민감도 지수는 각각 0.7096, 0.0839, 0.0352로 나타났으며 총 민감도 지수는 각각 0.9459, 0.1297, 0.0678로 나타났다. 결론: I형 곡선 거더의 응력응답은 입력운동의 불확실성에 대한 영향성이 지배적이며 각 불확실성 인자 사이의 교호작용에 큰 영향을 받는다. 따라서 입력운동의 개수 및 intensity measure과 같은 입력운동의 불확실성에 대한 추가적인 민감도 분석과 곡선거더의 개수 및 곡률과 같은 구조적 불확실성까지 고려한 총 민감도 분석은 필요하다.

Chaotic phenomena in the organic solar cell under the impact of small particles

  • Jing, Pan;Zhe, Jia;Guanghua, Zhang
    • Steel and Composite Structures
    • /
    • 제46권1호
    • /
    • pp.15-31
    • /
    • 2023
  • Organic solar cells utilized natural polymers to convert solar energy to electricity. The demands for green energy production and less disposal of toxic materials make them one of the interesting candidates for replacing conventional solar cells. However, the different aspects of their properties including mechanical strength and stability are not well recognized. Therefore, in the present study, we aim to explore the chaotic responses of these organic solar cells. In doing so, a specific type of organic solar cell constructed from layers of material with different thicknesses is considered to obtain vibrational and chaotic responses under different boundaries and initial conditions. A square plate structure is examined with first-order shear deformation theory to acquire the displacement field in the laminated structure. The bounding between different layers is considered to be perfect with no sliding and separation. On the other hand, nonlocal elasticity theory is engaged in incorporating the structural effects of the organic material into calculations. Hamilton's principle is adopted to obtain governing equations with regard to boundary conditions and mechanical loadings. The extracted equations of motion were solved using the perturbation method and differential quadrature approach. The results demonstrated the significant effect of relative glass layer thickness on the chaotic behavior of the structure with higher relative thickness leading to less chaotic responses. Moreover, a comprehensive parameter study is presented to examine the effects of nonlocality and relative thicknesses on the natural frequency of square organic solar cell structure.

강바닥판교의 종리브-횡리브 교차연결 상세변화에 따른 최적설계방안의 수치해석 연구 (Numerical Analysis Study for Optimal Design Method on Intersection between Longitudinal and Transversal Rib in Orthotropic Steel Deck Bridge)

  • 배두병;공병승
    • 한국전산구조공학회논문집
    • /
    • 제17권3호
    • /
    • pp.333-340
    • /
    • 2004
  • 최근 장대화 되어가는 강교량의 건설 기술발전에 따라, 자중이 가벼운 강바닥판 형식의 교량 사용이 증가되고 있다. 그러나 강바닥판 교량은 피로에 매우 취약한 구조형식이며, 특히 종리브와 횡리브가 교차되는 상세부에서의 피로균열은 강바닥판 교량이 가지고 있는 가장 큰 문제점 중 하나이다. 이러한 피로균열의 발생원인은 횡리브의 면외거동에 의한 2차 응력으로부터 유발된다. 본 연구에서는 강바닥판 교량의 피로균열을 억제하고, 종리브-횡리브 교차연결부의 상세개선을 위해 3차원 실물모형체의 피로실험과 범용구조해석 프로그램인 LUSAS를 이용한 세부변수 해석을 병행하여 최적의 상세를 제시하기 위한 연구를 수행하였다. 연구 결과, 국내 표준단면 형상에 곡선형 벌크헤드 플레이트를 부착한 상세가 가장 유리한 것으로 나타났으며, 세부 변수해석에 의한 개선 단면 적용시 발생되는 응력값이 최대의 경우 약 50%이상까지 감소하는 것으로 나타났다. 응력의 감소와 함께 횡리브의 간격 증대(G=400)에 따른 4%의 강재량과 34%의 용접길이 감소로 제작원가 절감 및 피로에 유리한 강바닥판교의 제작이 가능하게 되었다.

Experimental seismic behaviour of L-CFST column to H-beam connections

  • Zhang, Wang;Chen, Zhihua;Xiong, Qingqing;Zhou, Ting;Rong, Xian;Du, Yansheng
    • Steel and Composite Structures
    • /
    • 제26권6호
    • /
    • pp.793-808
    • /
    • 2018
  • In this study, the seismic performance of the connections between L-shaped columns composed of concrete-filled steel tubes (L-CFST columns) and H-beams used in high-rise steel frame structures was investigated. Seven full-scale specimens were tested under quasi-static cyclic loading. The variables studied in the tests included the joint type, the axial compression ratio, the presence of concrete, the width-to-thickness ratio and the internal extension length of the side plates. The hysteretic response, strength degradation, stiffness degradation, ductility, plastic rotation capacity, energy dissipation capacity and the strain distribution were evaluated at different load cycles. The test results indicated that both the corner and exterior joint specimens failed due to local buckling and crack within the beam flange adjacent to the end of the side plates. However, the failure modes of the interior joint specimens primarily included local buckling and crack at the end plates and curved corners of the beam flange. A design method was proposed for the flexural capacity of the end plate connection in the interior joint. Good agreement was observed between the theoretical and test results of both the yield and ultimate flexural capacity of the end plate connection.

Full-scale tests and finite element analysis of arched corrugated steel roof under static loads

  • Wang, X.P.;Jiang, C.R.;Li, G.Q.;Wang, S.Y.
    • Steel and Composite Structures
    • /
    • 제7권4호
    • /
    • pp.339-354
    • /
    • 2007
  • Arched Corrugated Steel Roof (ACSR) is a kind of thin-walled steel shell, composing of arched panels with transverse small corrugations. Four full-scale W666 ACSR samples with 18m and 30m span were tested under full and half span static vertical uniform loads. Displacement, bearing capacities and failure modes of the four samples were measured. The web and bottom flange in ACSR with transverse small corrugations are simplified to anisotropic curved plates, and the equivalent tensile modulus, shear modulus and Poisson's ratio of 18m span ACSR were measured. Two 18 m-span W666 ACSR samples were analyzed with the Finite Element Analysis program ABAQUS. Base on the tests, the limit bearing capacity of ACSR is low, and for half span loading, it is 74-75% compared with the full span loading. When the testing load approached to the limit value, the bottom flange at the sample's bulge place locally buckled first, and then the whole arched roof collapsed suddenly. If the vertical loads apply along the full span, the deformation shape is symmetric, but the overall failure mode is asymmetric. For half span vertical loading, the deformation shape and the overall failure mode of the structure are asymmetric. The ACSR displacement under the vertical loads is large and the structural stiffness is low. There is a little difference between the FEM analysis results and testing data, showing the simplify method of small corrugations in ACSR and the building techniques of FEM models are rational and useful.

Roof Truss Sliding 공법 적용사례 연구 인천국제공항 교통센터 - Great Hall (A Study on the application of Roof Truss Sliding Method in the Incheon International Amort Transportation Center - Great Hall)

  • 이동렬
    • 한국건설관리학회:학술대회논문집
    • /
    • 한국건설관리학회 2001년도 학술대회지
    • /
    • pp.214-221
    • /
    • 2001
  • 인천국제공항 교통센터의 Great Hall은 3차원의 입체적 곡면 Truss로 구성되어 있고, Great Hall Roof Truss는 최대 경간162m, 480Ton인 Truss을 포함한 13개의 Main Steel Truss로 구성되어 있다. Great Hall Roof Truss는 총 중량 6,300Ton, 9,600 Pieces로 1개의 절점당 최대 13개의 다른 부재가 접합하게 되어 있고, 12개의 Fabric 기초에 의해 지지된다. 경제적인 효과와 공기적 측면을 고려하여 기존 재래식(가설 Bent) 공법보다 Block화 공법 및 Sliding공법을 채택하였다. Roof 구조물은 3,550Ton과 2,700Ton 중량인 두 Block으로 나누고 구조물 외부에 설치 된 Giant Sleigh에 선 조립 후 Tandem Pulling Jack과 Strand를 이용하여 181m를 Sliding하여 본 구조물의 위치에 설치되었다.

  • PDF

Finite element vibration analysis of laminated composite parabolic thick plate frames

  • Das, Oguzhan;Ozturk, Hasan;Gonenli, Can
    • Steel and Composite Structures
    • /
    • 제35권1호
    • /
    • pp.43-59
    • /
    • 2020
  • In this study, free vibration analysis of laminated composite parabolic thick plate frames by using finite element method is introduced. Governing equations of an eigenvalue problem are obtained from First Order Shear Deformation Theory (FSDT). Finite element method is employed to obtain natural frequency values from the governing differential equations. The frames consist of two flat square plates and one singly curved plate. Parameters like radii of curvature, aspect ratio, ply orientation and boundary conditions are investigated to understand their effect on dynamic behavior of such a structure. In addition, multi-bay structures of such geometry with different stacking order are also taken into account. The composite frame structures are also modeled and simulated via ANSYS to verify the accuracy of the present study.