• 제목/요약/키워드: Curved Steel Structure

검색결과 41건 처리시간 0.02초

강관 용접부의 초음파 비파괴검사 (Ultrasonic Nondestructive Testing for Welded Steel Pipes)

  • 신병철;김일수
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제2권4호
    • /
    • pp.172-176
    • /
    • 1998
  • 강관 등과 같이 곡면을 이루는 구조물 용접부의 내부 결함을 검출하기 위한 기법을 제안하였다. 인공 결함을 만들어 초음파 비파괴검사를 행하고, 곡면의 표면 거리($Y_s$)를 계산하여 실측한 참값($Y_T$)과 비교해 보았다. 제안된 방법으로 계산한 값이 참값에 대하여 1%이하의 오차 범위에 들어오므로 강관 용접부의 내부 결함 검사에 응용될 수 있다.

  • PDF

Studies on post-tensioned and shaped space-truss domes

  • Schmidt, Lewis C.;Li, Hewen
    • Structural Engineering and Mechanics
    • /
    • 제6권6호
    • /
    • pp.693-710
    • /
    • 1998
  • This paper concerns studies on the shape formation of post-tensioned and shaped steel domes. The post-tensioned and shaped steel domes, assembled initially at ground level in an essentially flat condition, are shaped to a curved space form and erected into the final position by means of a post-tensioning technique. Based on previous studies on this shape formation principle, three post-tensioned and shaped steel domes have been constructed. The results of the shape formation tests and finite element analyses are reported in this paper. It is found that the first two test domes did not furnish a part-spherical shape as predicted by finite element analyses, because the movements of some mechanisms were not controlled sufficiently. With a revised post-tensioning method, the third dome obtained the theoretical prediction. The test results of the three post-tensioned and shaped domes have shown that a necessary condition to form a desired space shape from a planar layout with low joint stiffnesses is that the movements of all the existing mechanisms must be effectively controlled as indicated by the finite element analysis. The extent of the maximum elastic deformation of a post-tensioned and shaped steel structure is determined by the strength of the top chords and their joints. However, due to the semi-rigid characteristic of the top chord joints, the finite element analyses cannot give a close prediction for the maximum elastic deformations of the post-tensioned and shaped steel domes. The results of the current studies can be helpful for the design and construction of this type of structure.

소수주형 수평곡선 강교량 상부구조의 자유진동 특성 분석 (Free-vibration Characteristics of Two-I-girder Steel Bridges Curved in Plan)

  • 이기세;김승준
    • 한국강구조학회 논문집
    • /
    • 제28권5호
    • /
    • pp.365-371
    • /
    • 2016
  • 두 개의 I형 거더로 이루어진 소수주형 교량의 경우, 합성 후 슬라브와 거더가 하나의 단면으로 인식될 수 있으며, 이에 따라 평면 외방향의 휨에 대한 중립축은 강축으로 간주 될 수 있다. 따라서 자유진동 모드에서는 평면 내의 휨거동이 지배적일 것이라 쉽게 예상할 수 있다. 그러나 곡선 교량은 직선교량과 달리 초기곡률로 인하여 중력하중 하에서도 항시 비틀림 모멘트가 작용한다. 휨과 비틀림의 상호 작용은 거더의 거동을 복잡하게 하며, 때에 따라서는 비틀림 모드가 휨모드보다 지배적으로 작용할 수 있게 된다. 다시 말해, 같은 환경 하에서 곡선교량은 초기 곡률에 따라 동특성이 달라질 수 있게 된다. 현재까지 수평 곡선 거더의 자유진동에 관한 연구는 많이 이루어져 왔으나 합성 거더에 대한 연구는 부족한 실정이다. 본 연구에서는 곡률 중심각의 변화에 따른 모드 변화와 고유 주파수의 변화를 3차원 모델링을 통하여 검증 하였다. 해석 모델은 합성 전후에 대하여 작성 되었으며, 고유 주파수와 진동 모드 변화를 고찰하였다.

Post-buckling analysis of geometrically imperfect tapered curved micro-panels made of graphene oxide powder reinforced composite

  • Mirjavadi, Seyed Sajad;Forsat, Masoud;Barati, Mohammad Reza;Hamouda, AMS
    • Steel and Composite Structures
    • /
    • 제36권1호
    • /
    • pp.63-74
    • /
    • 2020
  • The present research investigates post-buckling behavior of geometrically imperfect tapered curved micro-panels made of graphene oxide powder (GOP) reinforced composite. Micro-scale effects on the panel structure have been included based on strain gradient elasticity. Micro-panel is considered to be tapered based on thickness variation along longitudinal direction. Weight fractions of uniformly and linearly distributed GOPs are included in material properties based on Halpin-Tsai homogenization scheme considering. Post-buckling curves have been determined based on both perfect and imperfect micro-panel assumptions. It is found that post-buckling curves are varying with the changes of GOPs weight fraction, geometric imperfection, GOP distribution type, variable thickness parameters, panel curvature radius and strain gradient.

Experimental investigation of a method for diagnosing wall thinning in an artificially thinned carbon steel elbow based on changes in modal characteristics

  • Byunyoung Chung ;Jonghwan Kim ;Daesic Jang;Sunjin Kim;Youngchul Choi
    • Nuclear Engineering and Technology
    • /
    • 제55권3호
    • /
    • pp.947-957
    • /
    • 2023
  • Curved cylindrical structures such as elbows have a non-uniform thickness distribution due to their fabrication process, and as a result have a number of complex mode shapes, including circumferential and axial nodal patterns. In nuclear power plants, material degradation is induced in pipes by flow accelerated erosion and corrosion, causing the wall thickness of carbon steel elbows to gradually thin. The corresponding frequencies of each mode shape vary according to the wall thinning state. Therefore, the thinning state can be estimated by monitoring the varying modal characteristics of the elbow. This study investigated the varying modal characteristics of artificially thinned carbon steel elbows for each thinning state using numerical simulation and experimental methods (MRIT, Multiple Reference Impact Test). The natural frequencies of specified mode shapes were extracted, and results confirmed they linearly decreased with increasing thinning. In addition, by comparing single FRF (Frequency Response Function) data with the results of MRIT, a concise and cost effective thinning estimation method was suggested.

Nondestructive damage evaluation of a curved thin beam

  • Kim, Byeong Hwa;Joo, Hwan Joong;Park, Tae Hyo
    • Structural Engineering and Mechanics
    • /
    • 제24권6호
    • /
    • pp.665-682
    • /
    • 2006
  • A vibration-based nondestructive damage evaluation technique for a curved thin beam is introduced. The proposed method is capable of detecting, locating, and sizing structural damage simultaneously by using a few of the lower natural frequencies and their corresponding mode shapes before and after a small damage event. The proposed approach utilizes modal flexibilities reconstructed from measured modal parameters. A rigorous system of equations governing damage and curvature of modal flexibility is derived in the context of elasticity. To solve the resulting system of governing equations, an efficient pseudo-inverse technique is introduced. The direct inspection of the resulting solutions provides the location and severity of damage in a curved thin beam. This study confirms that there is a strong linear relationship between the curvature of modal flexibility and flexural damage in the selected class of structures. Several numerical case studies are provided to justify the performance of the proposed approach. The proposed method introduces a way to avoid the singularity and mode selection problems from earlier attempts.

Vibration and mode shape analysis of sandwich panel with MWCNTs FG-reinforcement core

  • Tahouneh, Vahid
    • Steel and Composite Structures
    • /
    • 제25권3호
    • /
    • pp.347-360
    • /
    • 2017
  • The goal of this study is to fill this apparent gap in the area about vibration analysis of multiwalled carbon nanotubes (MWCNTs) curved panels by providing 3-D vibration analysis results for functionally graded multiwalled carbon nanotubes (FG-MWCNTs) sandwich structure with power-law distribution of nanotube. The effective material properties of the FG-MWCNT structures are estimated using a modified Halpin-Tsai equation. Modified Halpin-Tsai equation was used to evaluate the Young's modulus of MWCNT/epoxy composite samples by the incorporation of an orientation as well as an exponential shape factor in the equation. The exponential shape factor modifies the Halpin-Tsai equation from expressing a straight line to a nonlinear one in the MWCNTs wt% range considered. Also, the mass density and Poisson's ratio of the MWCNT/phenolic composite are considered based on the rule of mixtures. Parametric studies are carried out to highlight the influence of MWCNT volume fraction in the thickness, different types of CNT distribution, boundary conditions and geometrical parameters on vibrational behavior of FG-MWCNT thick curved panels. Because of using two-dimensional generalized differential quadrature method, the present approach makes possible vibration analysis of cylindrical panels with two opposite axial edges simply supported and arbitrary boundary conditions including Free, Simply supported and Clamped at the curved edges. For an overall comprehension on 3-D vibration analysis of sandwich panel, some mode shape contour plots are reported in this research work.

선수미 흘수마크 용접을 위한 벽면이동로봇 개발 (Development of a Wall-climbing Welding Robot for Draft Mark on the Curved Surface)

  • 이재창;김호구;김세환;류신욱
    • 대한조선학회 특별논문집
    • /
    • 대한조선학회 2006년도 특별논문집
    • /
    • pp.112-121
    • /
    • 2006
  • The vertical displacement of a ship on the basis of the sea level is an important parameter for its stability and control. To indicate the displacement on operating conditions, "draft marks" are carved on the hull of the ship in various ways. One of the methods is welding. The position, shape and size of the marks are specified on the shipbuilding rules by classification societies to be checked by shipbuilders. In most cases, high-skilled workers do the welding along the drawing for the marks and welding bead becomes the marks. But the inaccuracies due to human errors and high labor cost increase the needs for automating the work process of the draft marks. In the preceding work, an indoor robot was developed for automatic marking system on flat surfaces and the work proved that the robot welding was more effective and accurate than manual welding. However, many parts of the hull structure constructed at the outdoor are cowed shapes, which is beyond the capability of the robot developed for the indoor works on the flat surface. The marking on the curved steel surface requiring the 25m elevations is one of the main challenges to the conventional robots. In the present paper, the robot capable of climbing vertical curved steel surfaces and performing the welding at the marked position by effectively solving the problems mentioned earlier is presented.

  • PDF

포스트텐션에 의한 격자 돔형 공간 구조의 거동 특성 (Behaviour Characteristic of Grid Dome Shaped Space Structures by Post-tensioning)

  • 김진우
    • 한국해양공학회지
    • /
    • 제16권1호
    • /
    • pp.41-45
    • /
    • 2002
  • This paper is concerned with the erection and ultimate load test of dome shaped space structures by post-tensioning. It is a fast and economical method for constructing such a dome by post-tensioning of the cable in bottom chords. This structure consists of uniform pyramids in a flat layouts on the ground, and then the structure is shaped and erected into its final curved space structure. Ultimate load test was performed for dome shaped space structures. The feasibility of the proposed erection method and the reliability of the established geometric model were confirmed with numerical analysis and experimental investigation on a small scale steel model. As a results we can find the most reasonable modeling technique for the prediction of shape formation in practices and we can know the characteristic of the behaviour in ultimate load test for practical design purposes.

미끄럼방지포장을 설치한 강상자형 교량의 동적해석 (Dynamic Analysis of Steel Box Girder Bridge installed with Skid Proof Pavement)

  • 박병득;정재훈;임성순
    • 한국강구조학회 논문집
    • /
    • 제14권2호
    • /
    • pp.329-337
    • /
    • 2002
  • 본 연구는 국내에서 차량의 안전주행을 유도하기 위하여 곡선교, 고가차도 등의 포장면에 설치하는 미끄럼방지포장이 강상자형 교량에 미치는 영향을 분석하기 위하여 강상자형 교량에서 현장재하시험과 전산구조해석을 실시, 상호 비교함으로서 강상자형 교량의 동적 응답을 분석하였다. 강상자형 교량의 현장재하시험에서는 미끄럼방지포장전후의 고유진동수와 동적처짐을 측정하였으며 전산구조해석에서는 현장재하시험 교량의 제원을 입력값으로 하여 미끄럼방지포장전후의 동적응답을 해석하여 현장재하시험과 상호 비교 분석하였다. 본 연구는 분석한 자료를 바탕으로 미끄럼방지포장과 같은 도로시설물이 교량의 동적응답에 미치는 영향에 대해 기초자료를 제시하는데 그 목적이 있다.