• 제목/요약/키워드: Curved Guideway

검색결과 6건 처리시간 0.069초

도시형 자기부상열차의 곡선 가이드웨이 매개변수 연구 (Parametric Study of Curved Guideways for Urban Maglev Vehicle)

  • 한종부;김기정;한형석;김성수
    • 대한기계학회논문집A
    • /
    • 제38권3호
    • /
    • pp.329-335
    • /
    • 2014
  • U 자형 전자석 하나로 부상력과 안내력을 동시에 얻는 중 저속 자기부상열차는 안내제어기 없이 곡선을 주행한다. 때문에 곡선, 특히 곡률반경이 매우 작은 곡선 주행 시에 차량이 레일과 물리적 접촉을 방지하기 위해서는 곡선형상의 결정이 세심하게 이루어져야 한다. 특히 완화곡선의 형상이 중요하다. 본 논문에서는 완화곡선 선로를 구성하는 형상 매개변수들의 차량 안내 성능에의 영향도를 분석하는데 목적이 있다. 이를 위하여 차량, 전자석, 부상제어기, 곡선가이드웨이가 통합된 3 차원 자기부상열차 다물체 동역학 모델을 개발하였고, 개발된 모델을 이용하여 곡선형상을 구성하는 매개변수 연구를 수행하였다. 연구 결과는 곡선형상의 결정이나 차량의 대차구조를 설계하는데 이용이 가능하다고 할 수 있다.

자기부상열차의 주행안정성 해석에 의한 횡 댐퍼 파라미터 연구 (A Parameter Study of Lateral Damper on Hunting Stability of Maglev Vehicle)

  • 한종부;김기정;김창현;한형석
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 정기총회 및 추계학술대회 논문집
    • /
    • pp.75-80
    • /
    • 2011
  • In the area of wheel on rail vehicle, hunting stability which is generated by lateral motion is one of important characteristics for running safety. It might cause not only oscillation of vehicle but also derailment in an unstable area of the high speed. A Maglev vehicle is usually controlled the voltage to maintain the air gap between electromagnet and track. However, in Maglev system, an occurrence possibility of hunting motion could be high, because Maglev vehicle is not controlled directly lateral force between electromagnet and track in the curved guideway. In this paper, running safety is evaluated when Maglev vehicle run on guideway at high speed according to installment of damper between maglev vehicles and bogies, and to analyze the effect of it. Also, the parametric study is carried out for selecting effective lateral damper properties through the simulation. To accurately predict the running safety, 3d multibody dynamics models which are included air spring, guideway conditions and irregularities profile are used. With the results acquired, suggestions were made whether to adopt the damper and how to optimize the damping characteristics.

  • PDF

TPS를 이용한 한국형 고무차륜경량전철(K-AGT)의 성능특성 분석 (Train Performance Characteristics of Korean Rubber-Tired AGT System by TPS)

  • 이동형;구동회
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2005년도 추계학술대회 논문집
    • /
    • pp.799-804
    • /
    • 2005
  • In this work, the characteristics of train performance of Korean rubber-tired AGT system(K-AGT) are evaluated by using TPS(Train Performance Simulation) and these results are compared to those of other LRT(Light Rail Transit) systems. The performance characteristics of K-AGT was analyzed by comparing the scheduled speed and the energy consumption in case of station interval change and rail track condition change in, the scheduled construction line. In the scheduled construction line, scheduled speed of K-AGT was no difference with other systems and energy consumption was less than other LRT's. In case station intervals are increased, scheduled speed of K-AGT shows similar increasing rate and in curved and graded track conditions K-AGT has no difference in scheduled speed with other systems. As a simulation result by track condition change, when the track which is smaller than curved line of 250m dominates more than $50\%$ in whole track, K-AGT is similar to other systems to the point of scheduled speed and there is advantage in energy consumption.

  • PDF

초고속 자기부상열차의 부상 및 안내 제어 (Levitation and Guidance Control of Super Speed Maglev Trains)

  • 김창현;이종민;김봉섭;한형석
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 정기총회 및 추계학술대회 논문집
    • /
    • pp.3079-3085
    • /
    • 2011
  • Through Korean Urban Maglev Program started in 2006, an urban maglev train was developed and the demonstration line is under construction as of now in 2011. The target speed of the developed maglev train is 110km/h, and the core technologies for super speed maglev trains over 500km/h are being studied. The propulsion and levitation systems of the super speed maglev train under consideration consist of linear synchronous motors (LSM) and levitation electromagnets which also act as a mover of LSM. In addition, guidance electromagnets are used to ensure stable running on curved tracks during super speed operation. The levitation and guidance control is focused on in this paper. For experimental purpose, a small maglev train is being manufactured, and its levitation and guidance controller is studied. The main task of the controller is to maintain the gap between the corresponding electromagnet and the guideway constantly. In general, measurements of the gap, acceleration and current and so on are utilized, and the gap control is implemented independently for each electromagnet. In this paper, the levitation and guidance system is modelled considering mechanical interactions, and the levitation and guidance controller is proposed based on this model. The developed controller is verified by various simulations using MATLAB/Simulink.

  • PDF

자기부상열차(磁氣浮上列車) 기술체계(技術體系)와 개발전략(開發戰略) (Present Status and Development Strategies of Maglev in Korea)

  • 유문환;김인근
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1991년도 하계학술대회 논문집
    • /
    • pp.102-105
    • /
    • 1991
  • In recognition of the transportation problems of the present and to prepare for the ever increasing demands of the future, government decided to develop the magnetically levitated train domestically and started R&D program office in Korea Institute of Machinery and Metals(KIMM). This office since has established three step by step goals : first to develop a 40 passenger exhibition vehicle for Daejon EXPO'93, second to develop the low to mid-speed maglev system for urban public transportation by 1997 and finally the high speed inter-city maglev train by year 2001. The first two maglev systems will use attractive levitation-LIM driven technologies and these technologies are the ones currently being developed by this office and others. The maglev train system is a product of wide range of technologies from electro-technologies to civil engineering technologies. Some of the technologies are currently available but more have to be developed in the near future and these technologies are owned by or to be developed by various institutions within the science & technology community. The level of the technologies available at the present time are still very rudimentary and their basis are very narrow. Recently we have made a few successes in terms of levitation and propulsion but they are only with small scale modules and results are very qualitative at best. A great deal of development work has yet to be done to refine the technologies and to gain confidence. Full scale levitation/propulsion modules will be tested on the curved guideway within 6 months by this office and another institution. This paper reviews the current status of the maglev technologies in Korea and discuss the development strategies. The Korean maglev program is very ambitious and the schedule is even more so. A steady financial support and strong system engineering and integration are essential to the success of this program.

  • PDF

U 자형 전자석을 사용하는 자기부상열차의 횡진동 저감 연구 (Lateral Vibration Reduction of a Maglev Train Using U-shaped Electromagnets)

  • 한종부;김기정;한형석;김성수
    • 대한기계학회논문집A
    • /
    • 제36권11호
    • /
    • pp.1447-1453
    • /
    • 2012
  • 도시형 자기부상열차는 U 자형 전자석만을 사용하여 부상공극을 일정하게 유지하며 주행한다. U자형 전자석은 그 형상 특성으로 인하여 전자석 위치에 따라 안내력을 동시에 갖기 때문에 능동적 횡공극 제어가 없이도 차량을 레일에 따라 안내할 수 있는 장점을 갖는다. 그러나 횡공극을 제어하기 않기 때문에 횡진동이 증가하여 승차감 및 주행안정성에 악영향을 미칠 수 있다. 본 논문에서는 능동제어가 없이도 횡진동을 저감시키기 위한 방법으로 횡댐퍼 적용 효과에 대한 분석이 이루어진다. 이를 위하여 자기부상열차의 횡방향 고유진동특성을 우선 해석하고, 횡방향 댐퍼를 설치했을 때의 진동저감 효과 분석이 이루어진다. 정확한 횡진동 예측을 위하여 자기부상열차의 3 차원 다물체 동역학 모델을 사용하였다. 본 논문의 결과를 통해서 자기부상열차의 횡진동 저감을 위한 횡댐퍼 채택 제안에 활용하고자 한다.