• Title/Summary/Keyword: Curved Bridge

Search Result 127, Processing Time 0.02 seconds

Numerical performance assessment of Tuned Mass Dampers to mitigate traffic-induced vibrations of a steel box-girder bridge

  • Bayat, Elyas;Bayat, Meysam;Hafezzadeh, Raheb
    • Structural Engineering and Mechanics
    • /
    • v.78 no.2
    • /
    • pp.125-134
    • /
    • 2021
  • In this paper, the effects of Tuned Mass dampers (TMDs) on the reduction of the vertical vibrations of a real horizontally curved steel box-girder bridge due to different traffic loads are numerically investigated. The performance of TMDs to reduce the bridge vibrations can be affected by the parameters such as dynamic characteristics of TMDs, the location of TMDs, the speed and weight of vehicles. In the first part of this study, the effects of mass ratio, damping percentage, frequency ratio, and location of TMDs on the performance of TMDs to decrease vertical vibrations of different sections of bridge deck are evaluated. In the second part, the performance of TMD is investigated for different speeds and weights of traffic loads. Results show that the mass ratio of TMDs is the more effective parameter in reducing imposed vertical vibration in comparison with the damping ratio. Furthermore, it is found that TMD is very sensitive to its tuned frequency, i.e., with a little deviation from a suitable frequency, the expected performance of TMD significantly decreased. TMDs have a positive and considerable performance at certain vehicle speeds and this performance declines when the weight of traffic loads is increased. Besides, the results reveal that the highest impact of TMD on the reduction of the vertical vibrations is when free vibrations occur for the bridge deck. In that case, maximum reductions of 24% and 59% are reported in the vertical acceleration of the bridge deck for the forced and free vibration amplitudes, respectively. The maximum reduction of 13% is also obtained for the maximum displacement of the bridge deck. The results are mainly related to the resonance condition.

Negative Support Reactions of the Single Span Twin-Steel Box Girder Curved Bridges with Skew Angles (단경간 2련 강박스 거더 곡선교의 사각에 따른 부반력 특성)

  • Park, Chang Min;Lee, Hyung Joon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.4
    • /
    • pp.34-43
    • /
    • 2012
  • The behaviors of the curved bridges which has been constructed in the RAMP or Interchange are very complicate and different than orthogonal bridges according to the variations of radius of curvature, skew angle and spacing of shoes. Occasionally, the camber of girder and negative reactions can be occurred due to bending and torsional moment. In this study, the effects on the negative reaction in the curved bridge were investigated on the basis of design variables such as radius of curvature, skew angle, and spacing of shoes. For this study, the twin-steel box girder curved bridge with single span which is applicable for the RAMP bridges with span length(L) of 50.0m and width of 9.0m was chosen and the structural analysis to calculate the reactions was conducted using 3-dimensional equivalent grillage system. The value of negative reaction in curved bridges depends on the plan structures of bridges, the formations of structural systems, and the boundary conditions of bearing, so, radius of curvature, skew angle, and spacing of shoes among of design variables were chosen as the parameter and the load combination according to the design standard were considered. According to the results of numerical analysis, the negative reaction in curved bridge increased with an decrease of radius of curvature, skew angle, and spacing of shoes, respectively. Also, in case of skew angle of $60^{\circ}$ the negative reaction has been always occurred without regard to ${\theta}/B$, and in case of skew angle of $75^{\circ}$ the negative reaction hasn't been occurred in ${\theta}/B$ below 0.27 with the radius of curvature of 180m and in ${\theta}/B$ below 0.32 with the radius of curvature of 250m, and in case of skew angle of $90^{\circ}$ the negative reaction hasn't been occurred in the radius of curvature over 180m and in ${\theta}/B$ below 0.38 with the radius of curvature of 130m, The results from this study indicated that occurrence of negative reaction was related to design variables such as radius of curvature, skew angle, and spacing of shoes, and the problems with the stability including negative reaction will be expected to be solved as taken into consideration of the proper combinations of design variables in design of curved bridge.

Damage inspection and performance evaluation of Jilin highway double-curved arch concrete bridge in China

  • Naser, Ali Fadhil;Zonglin, Wang
    • Structural Engineering and Mechanics
    • /
    • v.39 no.4
    • /
    • pp.521-539
    • /
    • 2011
  • Jilin highway concrete bridge is located in the center of Jilin City, which is positioned in the middle part in Jilin Province in the east north of China. This bridge crosses the Songhua River and connects the north and the south of Jilin City. The main purpose of damages inspection of the bridge components is to ensure the safety of a bridge and to identify any maintenance, repair, or strengthening which that need to be carried out. The damages that occur in reinforced concrete bridges include different types of cracks, scalling and spalling of concrete, corrosion of steel reinforcement, deformation, excessive deflection, and stain. The main objectives of this study are to inspect the appearance of Jilin highway concrete bridge and describe all the damages in the bridge structural members, and to evaluate the structural performance of the bridge structure under dead and live loads. The tests adopted in this study are: (a) the depth of concrete carbonation test, (b) compressive strength of concrete test, (c) corrosion of steel test, (d) static load test, and (e) dynamic load test. According to the damages inspection of the bridge structure appearance, most components of the bridge are in good conditions with the exception arch waves, spandrel arch, deck pavement of new arch bridge, and corbel of simply supported bridge which suffer from serious damages. Load tests results show that the deflection, strain, and cracks development satisfy the requirements of the standards.

Reliability-Based Assessment of Safety and Residual Load Carrying-Capacity of Curved Steel-Box Ramp Bridges (신뢰성에 기초한 강상형 곡선램프교의 안전도 및 잔존내하력 평가)

  • Cho, Hyo-Nam;Choi, Young-Min;Min, Dae-Hong
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.1 s.30
    • /
    • pp.51-63
    • /
    • 1997
  • Highly curved steel-box bridges are usually constructed as ramp structures for the highway interchange and metropolitan elevated highway junction, but a number of these bridges are deteriorated and damaged to a significant degree due to heavy traffic. The main objective of the study is to develop a practical reliability-based assessment of safety and residual load carrying-capacity of existing curved steel-box ramp bridges. In the paper, for the realistic assessment of safety and residual load carrying-capacity of deteriorated and/or damaged curved steel-box bridges, an interactive non-linear limit state model is formulated based on the von Mises's combined stress yield criterion. It is demonstrated that the proposed model is effective for the assessment of reliability-based safety and the evaluation of residual load carrying-capacity of curved steel-box bridges. In addition, this study comparatively shows the applicability of various reliability analysis methods, and suggests a practical and effective one to be used in practice.

  • PDF

The Characteristics of Natural Frequencies of the Curved Bridge with Singly Symmetric Cross Sections (1축 대칭단면을 갖는 곡선교의 고유진동수특성)

  • Yhim, Sung Soon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.6
    • /
    • pp.1281-1288
    • /
    • 1994
  • Beams curved in plan are often designed with the circular curved member system including warping effects. In this study, the curved bridges are idealized as the circular curved member system with singly symmetric cross sections and simply supported ends. Displacement fields of them to satisfy the boundary conditions are expanded by Fourier series and the governing equation of natural frequencies of them is derived. The distributions of the characteristics of natural frequencies of them are shown according to the variations of relevant parameters-angle of intersection, curvature, and parameter of symmetry of cross section which can represent the properties of the curved bridges. A parametric study is conducted to investigate the effect of relevant parameters on natural frequencies.

  • PDF

Dynamic Response of Curved Bridges by Support Arrangement (받침배치에 따른 곡선교의 동적응답에 관한 연구)

  • 김상효;이용선;김태열
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.04a
    • /
    • pp.185-191
    • /
    • 2002
  • In this study a 3-dimensional analytical model is developed, which can analyses dynamic responses of curved bridges subject to moving vehicles. A 5-axle semi-trailer is modeled to simulate the actual tire forces that are redistributed by vehicle rolling effect due to the centrifugal force. The 1-span curved bridge with two steel box girders is modeled using the frame elements. The dynamic response characteristics of curved box girder bridges are examined and compared for two different support conditions. One is the case that two shoes are arranged at the outer sides of box girders with larger space between the two shoes and the other is that two shoes at the center of each box girder. In the curved bridges, the dynamic effect of moving vehicles influences the reaction force much more than other responses, such as displacement or stress, especially the upward reaction of inner-radius shoes. It is more advantageous for the reaction considering dynamic effect when shoes are arranged further at the outer sides of box girders than when shoes at the center of each box. The shoes for curved bridges with two-box girder system should be arranged to have larger distance.

  • PDF

An Study on the Stress Concentrations of Haunch with Rahmen Bridge (라멘교의 Haunch에 대한 응력 집중에 관한 연구)

  • 이영재;이윤영
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.309-314
    • /
    • 2000
  • Stress concentration at haunches of Rahmen bridges was evaluated by means of FEM analysis. The selected haunches were of three different types; straight, skew and curved ones with$55^{\circ}$of angle respectively. The result showed that the effect of stress distribution was the lowest at the curved haunch and the highest at the straight one. Such a result could be used to provide some guidelines for revising related standard specifications.

  • PDF

Development of Curved-Glass Automatic Shaping System using PID Servo-Drivers (PID 서보제어기를 이용한 곡면유리 자동성형 시스템 개발)

  • 유병국;양근호
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2003.06a
    • /
    • pp.161-164
    • /
    • 2003
  • This research presents the parallel control scheme of PID servo-driver for shaping of the curved glass. The designed system consists of a PC, main controller and 11 servo-drivers. Each elements are connected by using RS-232C and 8-bit bus communication. In order to guarantee the stability and the control performance, we use the LM629, a precision PID motion controller, and LMD18200, a H-bridge on the servo-drivers. PC calculates position values of 11 DC motors by using the pre-determined curvature value and offers the user interface environment operator.

  • PDF