• Title/Summary/Keyword: Curved

Search Result 3,064, Processing Time 0.028 seconds

Nonlocal free vibration analysis of a doubly curved piezoelectric nano shell

  • Arefi, Mohammad
    • Steel and Composite Structures
    • /
    • v.27 no.4
    • /
    • pp.479-493
    • /
    • 2018
  • In this paper nonlocal free vibration analysis of a doubly curved piezoelectric nano shell is studied. First order shear deformation theory and nonlocal elasticity theory is employed to derive governing equations of motion based on Hamilton's principle. The doubly curved piezoelectric nano shell is resting on Pasternak's foundation. A parametric study is presented to investigate the influence of significant parameters such as nonlocal parameter, two radii of curvature, and ratio of radius to thickness on the fundamental frequency of doubly curved piezoelectric nano shell.

Design of Dual Curved Lens for Millimeter-Wave Imaging (밀리미터파 이미징을 위한 이중 곡률 렌즈의 설계)

  • Lee, Won-Hui;Pyo, Seongmin
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.6
    • /
    • pp.239-242
    • /
    • 2016
  • In this paper, we proposed the dual curved lens of concave type. HDPE (High Density Polyethylene) used to fabricate the dual curved lens. The dual curved lens consisted of two concave structures. Role of two concave structures is to beam uniform and expansion. A small concave structure has the greater curvature than big concave structure. The dual curved lens will apply to millimeter imaging system. We measured the dual curved lens performance using 250 GHz VDI source. And we simulated the dual curved lens using ZEMAX. Fabricated lens have a good performance for beam uniform and expansion.

A Study on the Bending Process for the Circular Curved Tube and Rectangular Curved Tube with Fins (핀이 부착된 금속곡관 제품의 열간압출 굽힘가공에 관한 연구)

  • Kim M. G.;Park J. W.;Jin I. T.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.10a
    • /
    • pp.204-207
    • /
    • 2001
  • The bending process for the circular curved tube and rectangular curved tube with fins can be developed by the hot metal extrusion machine with the multiple punches moving in the different velocity. The bending phenomenon can be controlled by the two variables. The one of them is the difference of velocity at the die exit section by the different velocity of billets through the multi-hole container. The other is the one by the different hole diameter. The results of the experiment show that the circular curved tube with fins and rectangular curved tube with pins can be formed by the extrusion process and that the curveture of the product can be controlled by the velocity of punch and diameter of container hole and that the defects such as the distortion of section and the thickness change of the wall of tube the folding and wrinkling of thin tube and fins did not happen after the bending processing by the extrusion bending machine.

  • PDF

The Analysis of Hydrological Property with Curved-channel Type (하도만곡형상에 따른 수리특성분석)

  • Ahn, Seung-Seop;Lee, Sang-Il;Park, Dong-Il;Kim, Wi-Seok
    • Journal of Environmental Science International
    • /
    • v.20 no.10
    • /
    • pp.1309-1317
    • /
    • 2011
  • This study selected 6 river reach, which have various curved-channel, included in an object of study as making the Nakdong River, which is a real nature river, as a point of an object of study by using SMS RMA-2 model, a 2D numerical analysis model, and applied project flood and analyzed and examined characteristic of hydrological property and super-elevation, which includes characteristic of the velocity of a moving fluid. As a result, in a river reach, whose width is wide, angle of curved-channel has impact on the velocity of a moving fluid of inside of curved-channel and in a river reach, whose width is narrow, the radius of curvature and width of the river have impact on the velocity of a moving fluid of inside of curved-channel. Also it found out that the ratio of reduction in water-level of inside of curved-channel is more bigger than ratio of increasing in water-level of outside of curved-channel when project flood is increasing and angle of curve is increasing. Based on this, this study would be used as a expectation of danger and preliminary data in planning real river or a business, that creates an environment.

Parametric analysis on Deformation of Sharp Curved Ballasted Track (급곡선 자갈궤도의 궤도변형에 관한 매개변수 해석)

  • Choi, Jung-Youl;Kim, Jun-Hyung;Son, Gab-Soo;Kim, Sang-Jin
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.4
    • /
    • pp.28-33
    • /
    • 2017
  • A sharp curved ballasted track on earthwork that was connected with a direct fixation slab track on steel box railway bridges have been deformed and damaged despite the frequently maintenance by a restoring force of sharp curved rail and track-bridge interaction forces such as axial forces and longitudinal displacement of continuous welded rail(CWR) owing to their structural characteristics, calling for alternatives to improve the structural safety and track irregularity. In this study, the authors aim to prove a cause of deformation for the sharp curved ballasted tracks to enhance the structural safety and track irregularity of ballasted track in service. A track-bridge interaction analysis and a finite-element method analysis for the sharp curved ballasted track were performed to consider the axial force and longitudinal displacement of CWR, the temperature and the effect of restoring force of sharp curved rail. From the results, the deformation of the sharp curved ballasted track with adjusted sleeper spacing from 833mm to 590mm were significantly reduced.

A Study on the Stiffness Locking Phenomena and Eigen Problem in a Curved Beam (곡선보의 강선 과잉 현상과 고유치에 관한 연구)

  • 민옥기;김용우;유동규
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.2
    • /
    • pp.310-323
    • /
    • 1990
  • A three-noded, with three degree-of-freedom at each node, in-plane curved beam element is formulated and employed in eigen-analysis of constant curvature beam. The conventional quadratic shape functions used in a three noded C .deg. type curved beam element produce such an undesirable large stiffness that a significant error is introduced in displacements and stresses. These phenomena are called 'Stiffness Locking Phenomena', which result from spurious strain energy due to inappropriate assumptions on independent isoparametric quadratic interpolation functions. Stiffness locking phenomena can be alleviated by using modified interpolation functions which get rid of spurious constraints of conventional interpolation functions. Eigenvalues and their modes as well as displacements and stresses may be locked because they are related to stiffness. Using modified curved beam element in eigenvalue problem of cantilever and arch, the property and performance of modified curved beam element are examined by numerical experimentations. In these eigen-analyses, mass matrices are calculated by using both modified and unmodified curved beam element, are compared with theoretical solutions. These comparisons show that the performance of the modified curved beam element is better than that of the unmodified curved beam element.

Optimization of Suspension Under the Condition of Curved Track in Railway Vehicle

  • Choi, Jong Yoon;Li, Zheng Yuan;Baek, Seung Guk;Song, Ki Seok;Koo, Ja Choon;Choi, Yeon Sun
    • International Journal of Railway
    • /
    • v.7 no.2
    • /
    • pp.57-63
    • /
    • 2014
  • This paper presents the optimization of suspension characteristics under the condition of curved track railway vehicles. Reducing lateral acceleration on curved track is an issue for high-speed railway vehicles. In terms of curved track running environments, reducing the lateral vibration of railway vehicles is critical to safety and curving performance. The properties of lateral damping and stiffness of both primary and secondary suspension show effect on wheel-set, bogie and car-body. Analysis for reducing the lateral vibration of rail vehicles with respect to the characteristics of both primary and secondary suspension has been developed using ADAMS/Rail. Response Surface Method has been chosen for the purpose of verifying correlation effects among design parameters. Also, this paper suggests the method for designing optimal suspension of railway vehicles on curved track. The optimization result indicates decrement of lateral acceleration on wheel-set by 3% and bogie by 1% on curved track. Finally, this paper comes to the conclusion that suspension system of railway vehicle (KTX I) is properly designed when regarding lateral vibration of railway vehicle on diverse curved track condition.

An Algorithm of Curved Hull Plates Classification for the Curved Hull Plates Forming Process (곡가공 프로세스를 고려한 곡판 분류 알고리즘)

  • Noh, Ja-Ckyou;Shin, Jong-Gye
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.46 no.6
    • /
    • pp.675-687
    • /
    • 2009
  • In general, the forming process of the curved hull plates consists of sub tasks, such as roll bending, line heating, and triangle heating. In order to complement the automated curved hull forming system, it is necessary to develop an algorithm to classify the curved hull plates of a ship into standard shapes with respect to the techniques of forming task, such as the roll bending, the line heating, and the triangle heating. In this paper, the curved hull plates are classified by four standard shapes and the combination of them, or saddle, convex, flat, cylindrical shape, and the combination of them, that are related to the forming tasks necessary to form the shapes. In preprocessing, the Gaussian curvature and the mean curvature at the mid-point of a mesh of modeling surface by Coon's patch are calculated. Then the nearest neighbor method to classify the input plate type is applied. Tests to verify the developed algorithm with sample plates of a real ship data have been performed.

Size-dependent vibration and electro-magneto-elastic bending responses of sandwich piezomagnetic curved nanobeams

  • Arefi, Mohammed;Zenkour, Ashraf M.
    • Steel and Composite Structures
    • /
    • v.29 no.5
    • /
    • pp.579-590
    • /
    • 2018
  • Size-dependent free vibration responses and magneto-electro-elastic bending results of a three layers piezomagnetic curved beam rest on Pasternak's foundation are presented in this paper. The governing equations of motion are derived based on first-order shear deformation theory and nonlocal piezo-elasticity theory. The curved beam is containing a nanocore and two piezomagnetic face-sheets. The piezomagnetic layers are imposed to applied electric and magnetic potentials and transverse uniform loadings. The analytical results are presented for simply-supported curved beam to study influence of some parameters on vibration and bending results. The important parameters are spring and shear parameters of foundation, applied electric and magnetic potentials, nonlocal parameter and radius of curvature of curved beam. It is concluded that the increase in radius of curvature tends to an increase in the stiffness of curved beam and consequently natural frequencies increase and bending results decrease. In addition, it is concluded that with increase of nonlocal parameter of curved beam, the stiffness of structure is decreased that leads to decrease of natural frequency and increase of bending results.

Effect of the curved vane on the hydraulic response of the bridge pier

  • Qasim, Rafi M.;Jabbar, Tahseen A.;Faisa, Safaa H.
    • Ocean Systems Engineering
    • /
    • v.12 no.3
    • /
    • pp.335-358
    • /
    • 2022
  • Hydrodynamic field alteration around a cylindrical pier using a curved vane is numerically investigated. The curved vane with various angles ranged from 10 to 220 degree is placed at the upstream of the cylindrical pier. Laminar flow is adopted in order to perform the steady-state analysis. It is found that the flow separation leads to the formation of four bubbles depending on the value of the curved vane angle. Two bubbles are located in the region between the rear of the curved vane and the leading surface of the cylindrical pier, while the remaining two bubbles are located at the wake zone behind the cylindrical pier. Numerical analysis is performed to reveal the hydrodynamic field and influence of curved vane on the formation and evolution of the bubbles. It is found that the center and size of the bubble depend mainly on the value of the curved vane angle. It is observed that the flow velocity vector shows clearly the alteration in the flow velocity direction especially at the leading surface and rear surface of the curved vane owing to the occurrence of flow separation and flow dissipation along the circumference of the vane.