• Title/Summary/Keyword: Curvature.

검색결과 3,958건 처리시간 0.024초

하천에서의 무생물적 환경인자와 생물과의 상관성 - 경기지방의 하천사례를 중심으로 - (Correlation between Biotic Factor and Abiotic Factor - Focus on the Case Streams in Kyonggi District -)

  • 김혜주;김송이;김창완
    • 한국환경생태학회지
    • /
    • 제20권4호
    • /
    • pp.374-390
    • /
    • 2006
  • 물리적 구조조사 항목 25개 중에서 하천유형 분류척도로 이용되는 9개의 항목과 출현한 저서생물 및 식물과의 상관성을 분석한 결과 하상재료의 다양성, 하도의 사행성 횡단사주의 발달정도가 생물의 출현에 높은 상관성을 보였다. 그리고 수화학적 인자의 경우 총 12개 중 COD농도만이 저서생물의 분포에 유효한 상관성을 나타내었다. 본 연구의 무생물적 인자와 생물적 인자와의 상관성 분석에서는 특히 모래하천과 자갈하천이 서로 음과 양의 방향으로 상관관계를 나타내어 두개 유형의 하천의 물리적 구조 및 생태적 특성이 서로 뚜렷하게 다르다는 것을 지시하고 있었다. 따라서 이러한 분석결과는 생물서식처를 고려해야만 하는 하천복원이나 하천의 생태적 유형분류를 위한 하천평가에도 활용되어질 수 있다고 사료된다.

스포츠쟈켓용 나일론/면 교직물의 설계조건에 따른 역학적 특성과 태 (Effect of Fabric Design Condition on the Mechanical Properties and Handle of Nylon/Cotton Union Fabrics for Sport Jacket)

  • 권오경;송민규
    • 한국의류산업학회지
    • /
    • 제5권3호
    • /
    • pp.267-272
    • /
    • 2003
  • Tactel(Nylon66) union fabrics were woven with the specification of 70d/34f nylon as warp for sport wear jacket. Weft yarn has three types; 100% cotton yarn, nylon core-spun yarn and nylon-polyurethane covering yarn as weft. Fabric structers were plain, twill and satin weave structure with the air jet loom. The mechanical properties of 8 fabrics were measured with KES-F and primary Hand Values and Total Hand Values were calculated. The results of the study were as follows: 1) There was little difference among LTs of N/CM fabric groups. RT of the fabrics with CM100's was bigger than that of fabrics with CM80's, resulting that the fabrics with CM100's have better formability. In terms of weaving structure, twill fabrics have shape deformation. 2) In comparison of RTs with weft yarn type, RT of N-PU covering yarn was the highest, followed by Nylon core-spun yarn and cotton yarn. Thus, the fabric with N-PU covering yarn has better stability of shape deformation. 3) Stretch yarn could express an excellent silhouette formation and twill and satin structures were better structure to make curvature on human form. 4) 2HG/G value of nylon core-spun fabrics was larger than that of N/C fabrics, but the silhouette formation of N/C fabrics was excellent. 5) The RC of N/PU was the highest, followed by N/P, and N/CM. 6) Koski of N/PU fabrics was the highest, Numeri of N/PU and N/Co-I were relatively higher than the others. THVs of N/CM-IV and N/CO-II were lower than the others, resulting that, twill structure was better than plain structure for a sport wear uses.

한방병원에 내원한 악관절 환자 52명에 관한 임상적 고찰 (The Clinical Study of 52 Patients with Temporomandibular Disorder who Visited Oriental Medical Hospital)

  • 이진혁;설무창;민관식;진은석;정해찬
    • 척추신경추나의학회지
    • /
    • 제4권1호
    • /
    • pp.65-73
    • /
    • 2009
  • Objectives : The propose of this study is to analyze characteristics with sex, age, motivation, symptom, Impression, treatment effect about temporomandibular disorder patients. Method : We performed a retrospective study of 52 patients who visited the Jaseng Hospital of Oriental Medicine, from August 2008 to October 2008. Result : Women occupied the most part. And 27 persons in the 20th are the most distribution of age. The majority of patients occured the symptom for no reason. In the distribution of symptoms, TMD pain(88.46%), Click sound(82.69%), neck pain(52.92%), headache(38.46%), lumbago(21.15%) happened. In the impression through radiological diagnoses, The majority of patients diagnosed Straightening of cervical lordotic curvature. Oriental medical treatment showed a very valuable effect on improvement of TMD symptom. Conclusion : The results showed a valuable treatment effect of temporotandibular disorders on Oriental medical treatment. Therefore this work have the necessity of continuous study and observation and will help us to understand the features of patients who visiting the TMD clinic of Jaseng Hospital of Oriental medicine.

  • PDF

A simple finite element formulation for large deflection analysis of nonprismatic slender beams

  • AL-Sadder, Samir Z.;Othman, Ra'ad A.;Shatnawi, Anis S.
    • Structural Engineering and Mechanics
    • /
    • 제24권6호
    • /
    • pp.647-664
    • /
    • 2006
  • In this study, an improved finite element formulation with a scheme of solution for the large deflection analysis of inextensible prismatic and nonprismatic slender beams is developed. For this purpose, a three-noded Lagrangian beam-element with two dependent degrees of freedom per node (i.e., the vertical displacement, y, and the actual slope, $dy/ds=sin{\theta}$, where s is the curved coordinate along the deflected beam) is used to derive the element stiffness matrix. The element stiffness matrix in the global xy-coordinate system is achieved by means of coordinate transformation of a highly nonlinear ($6{\times}6$) element matrix in the local sy-coordinate. Because of bending with large curvature, highly nonlinear expressions are developed within the global stiffness matrix. To achieve the solution after specifying the proper loading and boundary conditions, an iterative quasi-linearization technique with successive corrections are employed considering these nonlinear expressions to remain constant during all iterations of the solution. In order to verify the validity and the accuracy of this study, the vertical and the horizontal displacements of prismatic and nonprismatic beams subjected to various cases of loading and boundary conditions are evaluated and compared with analytic solutions and numerical results by available references and the results by ADINA, and excellent agreements were achieved. The main advantage of the present technique is that the solution is directly obtained, i.e., non-incremental approach, using few iterations (3 to 6 iterations) and without the need to split the stiffness matrix into elastic and geometric matrices.

Design criteria for birdstrike damage on windshield

  • Marulo, Francesco;Guida, Michele
    • Advances in aircraft and spacecraft science
    • /
    • 제1권2호
    • /
    • pp.233-251
    • /
    • 2014
  • Each aircraft have to be certified for a specified level of impact energy, for assuring the capability of a safe flight and landing after the impact against a bird at cruise speed. The aim of this research work was to define a scientific and methodological approach to the study of the birdstrike phenomenon against several windshield geometries. A series of numerical simulations have been performed using the explicit finite element solver code LS-Dyna, in order to estimate the windshield-surround structure capability to absorb the bird impact energy, safely and efficiently, according to EASA Certification Specifications 25.631 (2011). The research considers the results obtained about a parametric numerical analysis of a simplified, but realistic, square flat windshield model, as reported in the last work (Grimaldi et al. 2013), where this model was subjected to the impact of a 1.8 kg bird model at 155 m/s to estimate the sensitivity of the target geometry, the impact angle, and the plate curvature on the impact response of the windshield structure. Then on the basis of these results in this paper the topic is focused about the development of a numerical simulation on a complete aircraft windshield-surround model with an innovative configuration. Both simulations have used a FE-SPH coupled approach for the fluid-structure interaction. The main achievement of this research has been the collection of analysis and results obtained on both simplified realistic and complete model analysis, addressed to approach with gained confidence the birdstrike problem. Guidelines for setting up a certification test, together with a design proposal for a test article are an important result of such simulations.

Dynamic combination resonance characteristics of doubly curved panels subjected to non-uniform tensile edge loading with damping

  • Udar, Ratnakar. S.;Datta, P.K.
    • Structural Engineering and Mechanics
    • /
    • 제25권4호
    • /
    • pp.481-500
    • /
    • 2007
  • The dynamic instability of doubly curved panels, subjected to non-uniform tensile in-plane harmonic edge loading $P(t)=P_s+P_d\;{\cos}{\Omega}t$ is investigated. The present work deals with the problem of the occurrence of combination resonances in contrast to simple resonances in parametrically excited doubly curved panels. Analytical expressions for the instability regions are obtained at ${\Omega}={\omega}_m+{\omega}_n$, (${\Omega}$ is the excitation frequency and ${\omega}_m$ and ${\omega}_n$ are the natural frequencies of the system) by using the method of multiple scales. It is shown that, besides the principal instability region at ${\Omega}=2{\omega}_1$, where ${\omega}_1$ is the fundamental frequency, other cases of ${\Omega}={\omega}_m+{\omega}_n$, related to other modes, can be of major importance and yield a significantly enlarged instability region. The effects of edge loading, curvature, damping and the static load factor on dynamic instability behavior of simply supported doubly curved panels are studied. The results show that under localized edge loading, combination resonance zones are as important as simple resonance zones. The effects of damping show that there is a finite critical value of the dynamic load factor for each instability region below which the curved panels cannot become dynamically unstable. This example of simultaneous excitation of two modes, each oscillating steadily at its own natural frequency, may be of considerable interest in vibration testing of actual structures.

Vector mechanics-based simulation of large deformation behavior in RC shear walls using planar four-node elements

  • Zhang, Hongmei;Shan, Yufei;Duan, Yuanfeng;Yun, Chung Bang;Liu, Song
    • Structural Engineering and Mechanics
    • /
    • 제74권1호
    • /
    • pp.1-18
    • /
    • 2020
  • For the large deformation of shear walls under vertical and horizontal loads, there are difficulties in obtaining accurate simulation results using the response analysis method, even with fine mesh elements. Furthermore, concrete material nonlinearity, stiffness degradation, concrete cracking and crushing, and steel bar damage may occur during the large deformation of reinforced concrete (RC) shear walls. Matrix operations that are involved in nonlinear analysis using the traditional finite-element method (FEM) may also result in flaws, and may thus lead to serious errors. To solve these problems, a planar four-node element was developed based on vector mechanics. Owing to particle-based formulation along the path element, the method does not require repeated constructions of a global stiffness matrix for the nonlinear behavior of the structure. The nonlinear concrete constitutive model and bilinear steel material model are integrated with the developed element, to ensure that large deformation and damage behavior can be addressed. For verification, simulation analyses were performed to obtain experimental results on an RC shear wall subjected to a monotonically increasing lateral load with a constant vertical load. To appropriately evaluate the parameters, investigations were conducted on the loading speed, meshing dimension, and the damping factor, because vector mechanics is based on the equation of motion. The static problem was then verified to obtain a stable solution by employing a balanced equation of motion. Using the parameters obtained, the simulated pushover response, including the bearing capacity, deformation ability, curvature development, and energy dissipation, were found to be in accordance with the experimental observation. This study demonstrated the potential of the developed planar element for simulating the entire process of large deformation and damage behavior in RC shear walls.

공간곡선보요소에서의 감차최소화 이론 (Reduced Minimization Theory in Skew Beam Element)

  • 문원주;김용우;민옥기;이강원
    • 대한기계학회논문집A
    • /
    • 제20권12호
    • /
    • pp.3792-3803
    • /
    • 1996
  • Since the skew beam element has two curvatures which are a curvature and a torsion, spatial behavior of curved beam which cannot be included in one plane can be anlayzed by emploting the skew beam element. The $C^{0}$-continuous skew beam element shows the stiffness locking phenomenon when full integration is employed. The locking phenomenpn is characterized by two typical phenomena ; one is the much smaller displacement thant the exact one and theother is the undelation phenomenon is stress distribution. In this paper, we examine how unmatched coefficient in the constrained energy brings about the locking by Reduced Minimization theory. We perform the numerical ones. These comparisons show that uniformly full integration(UFI), which employs full integration for the constrained energy, entails the locking phenomenon. But the use of uniformly reduced integration(URI) of selectively reduced integration(SRI), which employs reduced integration for constrained energy, does not produce the significant errors of displacements of the undulation phenomenon in stress distribution since they do not entails the locking, Additionally, the error due to the approximated parameters for describing the geometry of skew beam is examined.d.

극세관 헬리컬 코일 증발관내 R-22의 열전달 및 압력손실 특성 (Characteristics of Heat Transfer and Pressure Drop of R-22 Inside an Evaporating Tube with Small Diameter Helical Coil)

  • 김주원;김정훈;서석기;김정훈;김종수
    • 대한기계학회논문집B
    • /
    • 제24권5호
    • /
    • pp.699-708
    • /
    • 2000
  • To make compact evaporator, experiments that show characteristics of evaporating heat transfer and pressure drop in the helically coiled small diameter tube were taken in this research. The experiments were performed with HCFC-22 in the helically coiled small diameter tube; inner diameter=1.0(mm), tube length=2.0(m), and curvature diameter=31, 34, 46.2(mm). The experiments were also carried out with the following test conditions; saturation pressure=0.588(MPa), mass velocity=$150{\sim}500(kg/m^2s)$, and heat flux=$1{\sim}5(kW/m^2)$. The experiment results are that the empirical correlation to predict heat transfer coefficient for single phase flow in helically coiled small diameter tube was obtained. It was found that dry-out is occurred at low-quality region for evaporation heat transfer because of breaking of annular liquid film. The friction factor of single phase flow of helically coiled tube was agreed with Prandtl's correlation. Finally, It was proposed for correlation that can precisely predict the friction factor of two phase flow of helically coiled tube.

확장 면적을 이용한 안정된 증발 마이크로채널 시스템의 설계 (Design of Stable Evaporative Micro-channel Systems Using Expanding Area)

  • 이희준
    • 대한기계학회논문집B
    • /
    • 제35권8호
    • /
    • pp.831-838
    • /
    • 2011
  • 마이크로채널 표면의 핵에서 생성된 기포는 물을 작동유체로 이용하는 경우 채널의 좁은 단면적에 의해 압착되어 유동불안정성을 유발한다. 직관 마이크로채널에서 압착된 기포는 관성 유동의 역방향인 채널 상류로 진행한다. 마이크로채널에서 역방향 유동을 없애기 위해 채널 하류의 단면적을 확장시키는 것이 효과적이다. 그 이유는 압착된 기포의 전후단 계면의 표면장력에 의한 압력차이가 계면의 반지름에 역비례해서 자연적으로 기포가 채널 하류로 이동하려는 힘이 발생하기 때문이다. 확장 증발 마이크로채널에서 정적 유동불안정성 모델이 제시되었으며, 실험으로 모델을 검증하였다. 또한, 안정된 확장 시스템을 설계하기 위해 국부 설계 개념을 도입하였다. 검증된 모델과 개념을 바탕으로 안정된 확장 증발 마이크로채널 설계를 성공적으로 수행하였다.