• Title/Summary/Keyword: Curvature Effect

Search Result 650, Processing Time 0.027 seconds

Nonlinear Analysis of RC Beams under Cyclic Loading Based on Moment-Curvature Relationship (모멘트-곡률 관계에 기초한 반복하중을 받는 철근콘크리트 보의 비선형 해석)

  • 곽효경;김선필
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.13 no.2
    • /
    • pp.245-256
    • /
    • 2000
  • A moment-curvature relationship to simulate the behavior of reinforced concrete beam under cyclic loading is introduced. Unlike previous moment-curvature models and the layered section approach, the proposed model takes into consideration the bond-slip effect by using monotonic moment-curvature relationship constructed on the basis of the bond-slip relation and corresponding equilibrium equation at each nodal point. In addition, the use of curved unloading and reloading branches inferred from the stress-strain relation of steel gives more exact numerical result. The advantages of the proposed model, comparing to layered section approach, may be on the reduction in calculation time and memory space in case of its application to large structures. The modification of the moment-curvature relation to reflect the fixed-end rotation and pinching effect is also introduced. Finally, correlation studies between analytical results and experimental studies are conducted to establish the validity of the proposed model.

  • PDF

EFFECT OF ANTICURVATURE FILING METHOD ON PREPARATION OF THE CURVED ROOT CANAL USING PROFILE (PROFILE을 이용한 근관형성 시 ANTICURVATURE FILING방법의 영향)

  • Song, Hyun-Ji;Chang, Ju-Hea;Cho, Kyung-Mo;Kim, Jin-Woo
    • Restorative Dentistry and Endodontics
    • /
    • v.30 no.4
    • /
    • pp.327-334
    • /
    • 2005
  • This study investigated the effect of anticurvature filing method on preparation of the curved root canal using ProFile. Thirty six resin blocks were divided equally into three groups by instrumentation motions: anticurvature filing motion. circumferential filing motion and straight up-and-down motion. Each resin block was sectioned at 8mm level from the apex and at the greatest curvature of the canal and reassembled in metal mold by a modified Bramante technique. All groups were instrumented with the ProFile system. At each levels. image of sectioned surface were taken using CCD camera under a stereomicroscope at $\times40$ magnification and stored. Distances of transportation at the inner and outer area of curvature and the centering ratio were determined and compared by statistical analysis. along with the assessment of the increase of root canal cross-sectional area. The results were as follows; 1. In all groups. there was no statistical difference in the mean increase of root canal cross-sectional area. the centering ratio. and the mean distances of transportation at the inner area of curvature at each level. 2. At 8mm level from the apex. the mean distances of transportation at the outer area of curvature decreases in following order anticurvature filing motion. circumferential filing motion. straight up-and­down motion but. no significant difference at the greatest curvature of the canal among three groups. Effect of anticurvature filing motion using ProFile does not seem to be different from other instrumentation motions at the inner area of curvature in curved root canal.

Material Nonlinear Analysis of RC Beams Based on Moment-Curvature Relations (모멘트-곡률 관계에 기초한 철근콘크리트 보의 재료비선형 해석)

  • 곽효경;김지은
    • Computational Structural Engineering
    • /
    • v.11 no.4
    • /
    • pp.295-307
    • /
    • 1998
  • 철근콘크리트 보에 대해서 인장강화효과의 소성힌지길이를 고려한 재료비선형 해석을 수행하였다. 비선형 해석에서 자유도가 많은 대형구조물에 적용시키기에는 많은 제약이 따르는 복잡한 층상해석기법을 사용하는 대신 단면해석을 통해 미리 구성된 모멘트-곡률 관계를 이용하였으며, 유한요소해석에서 사용요소의 크기에 따른 수치해석상의 오차를 줄이기 위해 인장강화효과와 소성힌지길이 개념을 도입하였다. 마지막으로 제안된 해석 알고리즘의 타당성을 검증하기 위하여 해석결과와 실험결과간의 상호 관계를 비교, 분석하였다.

  • PDF

Clinical studies on neck pain 4 cases associated with kyphotic cervical curvature (Kyphotic cervical curvature로 인한 항통(項痛) 4례(例)에 대한 임상적(臨床的) 고찰(考察))

  • Cho, Hyun-Yeul;Bae, Eun-Jeong;Lee, Kyung-Min;Lee, Jeong-Hoon;Soe, Jung-Chul;Han, Sang-Won
    • Journal of Acupuncture Research
    • /
    • v.19 no.3
    • /
    • pp.230-239
    • /
    • 2002
  • Kyphotic cervical curvature, straghtening is commonly caused by trauma, muscle spasm without trauma and wrong posture, etc. Objective : This study is performed to evaluate the clinical effect of neck pain associated with Kyphotic cervical curvatre on cervical x-ray lateral view. Methods : One of the many causes, We examined the patients with neck pain & upper back pain who visited to Department of Acupuncture & Moxibustion, Gumi Oriental Hospital of Kyung-San University from 16th June 1999 to 22th June 2000. Pre and post treatment, We evaluated the cervical angle, Jochumsen's method, VAS(visual analogue scale) and effective score of treatment. Results & Conclusion : 1. Kyphotic cervical curvature is mainly caused by wrong posture during long term, sudden trauma, etc. therfore, postcervical muscles and tendon are injuryed by strong stress. So, muscle imbalance and pain is occured. 2. On these cases, The improvement index for pre/post treatment showed 28/42, 10/15, 9/30, 28/42 degree in cervical angle. Jochumsen's method showed -1/+2, -9/-3, -5/-2, -1/+2mm. Afer treatment VAS is 2, 1, 1, 1 and effective score of treatment is above good. The results suggest that treatments of Oriental Medicine(Acupuncture & Moxibustion, Chu-Na, Cupping and Physical therapy) are effective methods for neck pain with kyphotic cervical curvature on cervical x-ray lateral view.

  • PDF

Simplified Moment-Curvature Relationship Model of Reinforced Concrete Columns Considering Confinement Effect (구속효과를 고려한 철근 콘크리트 기둥의 모멘트-곡률 관계 단순모델)

  • Kwak, Min-Kyoung;Yang, Keun-Hyeok
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.3
    • /
    • pp.279-288
    • /
    • 2016
  • The present study simplified the moment-curvature relationship to straightforwardly determine the flexural behavior of reinforced concrete (RC) columns. For the idealized column section, moments and neutral axis depths at different stages(first flexural crack, yielding of tensile reinforcing bar, maximum strength, and 80% of the maximum strength at the descending branch) were derived on the basis of the equilibrium condition of forces and compatibility condition. Concrete strains at the extreme compression fiber beyond the maximum strength were determined using the stress-strain relationship of confined concrete, proposed by Kim et al. The lateral load-displacement curves converted from the simplified moment-curvature relationship of columns are well consistent with test results obtained from column specimens under various parameters. The moments and the corresponding neutral axis depth at different stages were formulated as a function of longitudinal reinforcement and transverse reinforcement indices and/or applied axial load index. Overall, curvature ductility of columns was significantly affected by the axial load level as well as concrete compressive strength and the amount of longitudinal and transverse reinforcing bars.

Penetration Characteristics of CFRP Laminated shells according to Stacking Sequence and Curvature (CFRP 적층쉘의 적층구성 및 곡률 변화에 따른 관통 특성)

  • Cho Young Jea;Kim Young Nam;Yang In Young
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.2
    • /
    • pp.164-171
    • /
    • 2005
  • This study aims to examine an effect of stacking sequence and curvature on the penetration characteristic of a composite laminated shell. For the purpose, we manufactured specimens with different stacking sequences and curvatures, and conducted a penetration test using an air-gun. To examine an influence according to stacking sequence, as flat plate and curvature specimen had more plies, their critical penetration energy was higher, Critical penetration energies of specimen A and C with less interfaces somewhat higher than those of B and D with more interfaces. The reason that with less interfaces, critical penetration energy was higher is pre-impact bending stiffness of composite laminated shell with less interfaces was lower than that of laminated shell with more interfaces, but bending stiffness after impact was higher. And it is because interface, the weakest part of the composite laminated shell, was influenced by transverse impact. As curvature increases, critical penetration energy increases linearly. It is because as curvature increases, resistance to in-plane deformation as well as bending deformation increases, which need higher critical penetration energy. Patterns of cracks caused by penetration of composite laminated shells include interlaminar crack, intralaminar crack, and laminar fracture. A 0$^{\circ}$ply laminar had a matrix crack, a 90$^{\circ}$ply laminar had intralaminar crack and laminar fracture, and interface between 0$^{\circ}$and 90$^{\circ}$laminar had a interlaminar crack. We examined crack length and delamination area through a penetration test. For the specimen A and C with 2 interface, the longest circumferential direction crack length and largest delamination area were observed on the first interface from the impact point. For the specimen B and D with 4 interface, the longest crack length and largest delamination area were observed on the third interface from the impact point.

A Study on theProperty of Seepage in the Curved Levee by Numerical Analysis (제방만곡부에서의 침투특성에 관한 수치해석적 연구)

  • Park, Choon-Sik;An, Byeong-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.4
    • /
    • pp.5-17
    • /
    • 2021
  • In this paper, three-dimensional analysis of the curved levee was performed according to curvature angle, and radius of curvature to investigate the property of seepage. The hydraulic gradients in the curved parts of levees decreased in the outer levee and increased in the inner levee, compared to the two-dimensional analysis. The smaller the curvature angle and the radius of curvature, the larger the change of the hydraulic gradient, compared to the two-dimensional analysis. The effect of curvature radius on the hydraulic gradient was greater than the curvature angle. As a result of evaluating the piping safety factor for the critical hydraulic gradient, the safety factor was increased by 2~5% in the outer levee and decreased by 4~12% in the inner levee, compared to the two-dimensional analysis. Considering this reduction, if the two-dimensional analysis is performed on the curved part of the levee, and if designed the safety factor for piping is 0.1~0.3 greater than allowable FS=2.0, the safety factor of the curved part is slightly reduced, but there is no difficulty in securing stability.

Structural behavior of aluminum reticulated shell structures considering semi-rigid and skin effect

  • Liu, Hongbo;Chen, Zhihua;Xu, Shuai;Bu, Yidu
    • Structural Engineering and Mechanics
    • /
    • v.54 no.1
    • /
    • pp.121-133
    • /
    • 2015
  • The aluminum dome has been widely used in natatorium, oil storage tank, power plant, coal, as well as other industrial buildings and structures. However, few research has focused on the structural behavior and design method of this dome. At present, most designs of aluminum alloy domes have referred to theories and methods of steel spatial structures. However, aluminum domes and steel domes have many differences, such as elasticity moduli, roof structures, and joint rigidities, which make the design and analysis method of steel spatial structures not fully suitable for aluminum alloy dome structures. In this study, a stability analysis method, which can consider structural imperfection, member initial curvature, semi-rigid joint, and skin effect, was presented and used to study the stability behavior of aluminum dome structures. In addition, some meaningful conclusions were obtained, which could be used in future designs and analyses of aluminum domes.

An Comparison of an Immediate Deflection according to Tension Stiffening Effect (인장증강효과에 따른 순간 처짐량의 비교)

  • Kim, Young-Jin;Choi, Seung-Won;Kim, Woo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.71-72
    • /
    • 2010
  • In case of calculation of an immediate deflection according to EC2, a curvature and average curvature are calculated by reflecting tension stiffening effect. In this study, tension stiffening effects according to MC90 and EC2 were considered, and an immediate deflection was calculated. And also, it was compared to results in KCI provision and experimental data. In results, it has difference around 8~15% with respect to tension stiffening effect, but all of them predict well for the load-deflection behavior after yielding state.

  • PDF

Effect of axial load on flexural behaviour of cyclically loaded RC columns

  • Au, F.T.K.;Bai, Z.Z.
    • Computers and Concrete
    • /
    • v.3 no.4
    • /
    • pp.261-284
    • /
    • 2006
  • The flexural behaviour of symmetrically reinforced concrete (RC) columns cast of normal- and high-strength concrete under both monotonic and cyclic loading is studied based on an analytical procedure, which employs the actual stress-strain curves and takes into account the stress-path dependence of concrete and steel reinforcement. The analysis is particularly extended into the post-peak stage with large inelastic deformation at various applied axial load level. The effect of axial load on their complete flexural behaviour is then identified based on the results obtained. The axial load is found to have fairly large effect on the flexural behaviour of RC columns under both monotonic and cyclic loading. Such effects are discussed through examination of various aspects including the moment-curvature relationship, moment capacity, flexural ductility, variation of neutral axis depth and steel stress.