• 제목/요약/키워드: Current source analysis

검색결과 971건 처리시간 0.028초

기생성분을 고려한 저전압 AC 전류원 충전회로의 동작모드 해석 (Analysis of Operational Modes of Charger using Low-Voltage AC Current Source considering the Effects of Parasitic Components)

  • 정교범
    • 전력전자학회논문지
    • /
    • 제10권1호
    • /
    • pp.70-77
    • /
    • 2005
  • 압전소자를 이용한 마이크로발전기를 모델링한 저전압 AC 전류원으로부터 밧데리 충전을 위한 에너지 변환회로를 제안하고, 동작모드를 해석한다. 전체 시스템의 소형화 및 고효율화를 추구하기 위해서, MOSFET 풀브리지 정류기와 부스트 컨버터의 토폴로지를 채택하였다. 제안된 컨버터 시스템의 동작원리 및 동작모드를 스위칭 소자의 기생캐패시턴스를 고려하여 해석하고, 시뮬레이션을 통해 해석결과를 검증하였다.

Implementation of Grid-interactive Current Controlled Voltage Source Inverter for Power Conditioning Systems

  • Ko Sung-Hun;Shin Young-Chan;Lee Seong-Ryong
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • 제5B권4호
    • /
    • pp.382-391
    • /
    • 2005
  • Increasing of the nonlinear type power electronics equipment, power conditioning systems (PCS) have been researched and developed for many years in order to compensate for harmonic disturbances and reactive power. PCS's not only improve harmonic current and power factor in the ac grid line but also achieves energy saving used by the renewable energy source (RES). In this paper, the implementation of a current controlled voltage source inverter (CCVSI) using RES for PCS is presented. The basic principle and control algorithm is theoretically analyzed and the design methodology of the system is discussed. The proposed system could achieve power quality control (PQC) to reduce harmonic current and improve power factor, and demand side management (DSM) to supply active power simultaneously, which are both operated by the polarized ramp time (PRT) current control algorithm and the grid-interactive current control algorithm. A 1KVA test model of the CCVSI has been built using IGBT controlled by a digital signal processor (DSP). To verify the proposed system, a comprehensive evaluation with theoretical analysis, simulation and experimental results is presented.

EMTP를 이용한 전압원으로의 배전계통 고저항 사고 모델링 기법 (A Modelling Method of a High Impedance Fault in a Distribution System as a Voltage Source using EMTP)

  • 강용철;남순열;박종근;장성일
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제48권11호
    • /
    • pp.1388-1393
    • /
    • 1999
  • A more reliable algorithm for detecting a high impedance fault (HIF) requires fault currents at the relaying point containing information of load condition as well as HIF characteristics. This paper presents a modeling method of an HIF in a distribution system using EMTP. From the voltage and current waveforms of HIF experiment, the voltage-current characteristic is obtained and then piecewise linearized. The proposed method gets several points on the linearized voltage-current curve and then represents nonlinearity as piecewise linear resistances using Transient Analysis of Control Systems (TACS) in EMTP. Thus, an HIF is represented as a voltage source in the first and third quadrants of voltage-current plane. The method is implemented in EMTP and thus the voltage and current at the relaying point can be obtained when an HIF occurs. In this paper, an HIF was simulated on various load conditions and fault conditions in 22.9 [kV] distribution systems.

  • PDF

A Novel Harmonic Identification Algorithm for the Active Power Filters in Non-Ideal Voltage Source Systems

  • Santiprapan, Phonsit;Areerak, Kongpol;Areerak, Kongpan
    • Journal of Power Electronics
    • /
    • 제17권6호
    • /
    • pp.1637-1649
    • /
    • 2017
  • This paper describes an intensive analysis of a harmonic identification algorithm in non-ideal voltages source systems. The dq-axis Fourier with a positive sequence voltage detector (DQFP) is a novel harmonic identification algorithm for active power filters. A compensating current control system based on repetitive control is presented. A design and stability analysis of the proposed current control are also given. The aim of the paper is to achieve a robustness of the harmonic identification in a distorted and unbalanced voltage source. The proposed ideas are supported by a hardware in the loop technique based on a $eZdsp^{TM}$ F28335 and the Simulink program. The obtained results are presented to demonstrate the performance of the harmonic identification and the control strategy for the active power filter in non-ideal systems.

Analog CMOS Performance Degradation due to Edge Direct Tunneling (EDT) Current in sub-l00nm Technology

  • Navakanta Bhat;Thakur, Chandrabhan-Singh
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제3권3호
    • /
    • pp.139-144
    • /
    • 2003
  • We report the results of extensive mixed mode simulations and theoretical analysis to quantify the contribution of the edge direct tunneling (EDT) current on the total gate leakage current of 80nm NMOSFET with SiO2 gate dielectric. It is shown that EDT has a profound impact on basic analog circuit building blocks such as sample-hold (S/H) circuit and the current mirror circuit. A transistor design methodology with zero gate-source/drain overlap is proposed to mitigate the EDT effect. This results in lower voltage droop in S/H application and better current matching in current mirror application. It is demonstrated that decreasing the overlap length also improves the basic analog circuit performance metrics of the transistor. The transistor with zero gate-source/drain overlap, results in better transconductance, input resistance, output resistance, intrinsic gain and unity gain transition frequency.

Analysis of Switching Clamped Oscillations of SiC MOSFETs

  • Ke, Junji;Zhao, Zhibin;Xie, Zongkui;Wei, Changjun;Cui, Xiang
    • Journal of Power Electronics
    • /
    • 제18권3호
    • /
    • pp.892-901
    • /
    • 2018
  • SiC MOSFETs have been used to improve system efficiency in high frequency converters due to their extremely high switching speed. However, this can result in undesirable parasitic oscillations in practical systems. In this paper, models of the key components are introduced first. Then, theoretical formulas are derived to calculate the switching oscillation frequencies after full turn-on and turn-off in clamped inductive circuits. Analysis indicates that the turn-on oscillation frequency depends on the power loop parasitic inductance and parasitic capacitances of the freewheeling diode and load inductor. On the other hand, the turn-off oscillation frequency is found to be determined by the output parasitic capacitance of the SiC MOSFET and power loop parasitic inductance. Moreover, the shifting regularity of the turn-off maximum peak voltage with a varying switching speed is investigated on the basis of time domain simulation. The distortion of the turn-on current is theoretically analyzed. Finally, experimental results verifying the above calculations and analyses are presented.

Modeling of Heart Phantom using the Multidipole Current Source

  • Jang, Kwan-Hee;Yoon, Dal-Hwan;Min, Seung-Gi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.1957-1962
    • /
    • 2003
  • In order to design the phantom of heart, we have developed the multi-dipole current source system. Such a one be clue to the various motion of heart. The magnetocardiograph (MCG) system for diagnosing the disease of the heart due to an analysis of the heart signal. The multidipole current source system be built by microprocessor. We use the shield room to obtain a good experimental result. Then the signal acquired is mixed with a background noise, through a filtering extracts a pure signal. The pure signal such a heart phantom is analyzed by an electromagnetic map.

  • PDF

A CMOS Charge Pump Circuit with Short Turn-on Time for Low-spur PLL Synthesizers

  • Sohn, Jihoon;Shin, Hyunchol
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제16권6호
    • /
    • pp.873-879
    • /
    • 2016
  • A charge pump circuit with very short turn-on time is presented for minimizing reference spurs in CMOS PLL frequency synthesizers. In the source switching charge pump circuit, applying proper voltages to the source nodes of the current source FETs can significantly reduce the unwanted glitch at the output current while not degrading the rising time, thus resulting in low spur at the synthesizer output spectrum. A 1.1-1.6 GHz PLL synthesizer employing the proposed charge pump circuit is fabricated in 65 nm CMOS. The current consumption of the charge pump is $490{\mu}A$ from 1 V supply. Compared to the conventional charge pump, it is shown that the reference spur is improved by dB through minimizing the turn-on time. Theoretical analysis is described to show that the measured results agree well with the theory.

스너버에너지회생형 전류형 전력변환기의 설계법 (Design of Current Source AC/DC Converter with Snubber Energy Recovery)

  • 김태진;이뢰민사;박성준;변영복;김철우
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1996년도 하계학술대회 논문집 A
    • /
    • pp.345-347
    • /
    • 1996
  • Current source AC/DC converter with snubber energy recovery for high efficiency and high power converter was proposed. In this paper, design of the converter is presented. Voltage charged snubber condenser on commutation process is analyzed by theoretical analysis, simulation and experimental result.

  • PDF

전류형 인버터 설계를 위한 전력회로 시뮬레이션 연구 (A Study on Power Circuit Simulation for Design of Current Source Invertera)

  • 최호현;김경서
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1986년도 한국자동제어학술회의논문집; 한국과학기술대학, 충남; 17-18 Oct. 1986
    • /
    • pp.601-606
    • /
    • 1986
  • In this paper, two methods of power circuit simulation is described in order to obtain the back data for design of current source inverter. One is steady-state analysis by differential equations during the various operating modes. Another method uses switching function, which represents the switching pattern of inverter, and direct-guadrature model of induction motor. The results of digital computer simulation by two methods are compared with the results of laboratory test.

  • PDF