• Title/Summary/Keyword: Current measurement errors

Search Result 129, Processing Time 0.032 seconds

Measures to Improve the Efficiency of the Portable Air Quality Measurement System

  • CHOI, Jong-Sun;CHO, Dong-Myung;KWON, Woo-Taeg
    • Journal of Wellbeing Management and Applied Psychology
    • /
    • v.5 no.3
    • /
    • pp.27-41
    • /
    • 2022
  • Purpose: In this study, pollutants generated in industrial areas were measured using a Portable Air Quality Measurement System(PAQMS). This study intends to examine in detail improvement measures and operational capabilities to operate a more efficient PAQMS. Research design, data and methodology: This study compares and analyzes the measurement values of the PAQMS and the measurement values of the national air quality measurement network. It is intended to develop a PAQMS corresponding to the data of the national measurement network by minimizing the errors that occur during comparative measurement and analysis and supplementing and improving the problems that occur during the current equipment calibration. Results: A PAQMS is an essential equipment for faster and more accurate measurement and analysis of pollutants in case of untimely measurement and civil complaints due to Micro Climate(local weather and environmental influences). Currently, there are many atmospheric measurement equipment in Korea, but only equipment for each item is produced and sold. Currently, these devices on the market must satisfy various conditions such as stable power, temperature, and humidity to calculate accurate measurement values. Conclusions: Therefore, there is no equipment that satisfies the conditions for performing detailed measurement in the field where accurate measurement is required. In this study, these field work conditions and contents for stable measurement were mentioned in the text.

Characteristics on the Harmonic Sensitivity of an Induction Watthour Meter (유도형 적산전력량계의 고조파 민감도 특성)

  • Jang, Seok-Myeong;Lee, Seong-Ho;Park, Yeong-Tae
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.11
    • /
    • pp.587-596
    • /
    • 1999
  • The use of Switching elements in power systems causes the current or voltage to involve harmonic waves. Harmonics bring about registration errors of the equipment for measuring power. In case the induction watthour meter designed on sinusoidal source is used in the measurement of power with harmonics, the precise measurement of power has many problems because harmonics cause a decrease of power factor and vibration by the unstable driving force on the aluminum disc. In this paper, analysis and test results on the harmonic sensitivity of an induction watthour meter is reported when the input voltage and current with harmonics were supplied to single-phase watthour meter.

  • PDF

Effect of Mutual Coupling Between Test Leads on Ground Impedance Measurement (측정선의 상호유도작용이 접지임피던스의 측정에 미치는 영향)

  • Lee, Bok-Hee;Eom, Ju-Hong;Cho, Sung-Chul
    • Proceedings of the KIEE Conference
    • /
    • 2003.11a
    • /
    • pp.71-74
    • /
    • 2003
  • Fall-of-potential method is used usually to measure the ground impedance of large scale grounding system exactly. Because the interlinked magnetic flux between closed loops to inject test current and to measure potential rise is existed in E-P-C straight line arrangement, mutual(or inductive) coupling influences greatly on the measurement correctness. Measurement errors produced from inductive coupling could be reduced by the arrangement methods of auxiliary electrodes. Right angle or P-E-C order arrangement methods were effective to reduce the inductive coupling and the decrease degree of measurement error was analysed as quantitative through an experiment.

  • PDF

Evaluation of the Accuracy of Grounding Impedance Measurement of Grounding Grid (접지그리드의 접지임피던스 측정의 정확도 평가)

  • Choi, Jong-Hyuk;Choi, Young-Chul;Jeong, Dong-Cheol;Kim, Dong-Seong;Lee, Bok-Hee
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.12
    • /
    • pp.146-153
    • /
    • 2009
  • Recently, the common grounding systems are adapted in most large structures. Since the ground resistance is insufficient to evaluate the performance of grounding systems, it is needed to measure grounding impedance. Even though the methods of measuring grounding impedance of large grounding systems are presented in IEEE standard 81.2, but they have not been described in detail. In this paper, we present the accurate method of measuring grounding impedance based on the revised fall-of-potential method and measurement errors due to earth mutual resistance and ac mutual coupling depending on locating test electrodes at remote earth were examined for the 15[m]$\times$15[m] grounding grid. As a result, the measurement error due to earth mutual resistance is decreased when the distance to auxiliary electrodes increased. To get rid of measurement errors due to mutual coupling, the potential lead should be installed at a right angle to the current lead. When the angle between the potential and the current leads is an acute angle or an obtuse angle, the mutual couple voltage is positive or negative, respectively. Generally, the measurement errors due to mutual coupling with an obtuse angle route are lower than those with an acute angle route.

MEG Measurement Using a 40-channel SQUID System (40 채널 SQUID 시스템을 이용한 뇌자도 측정)

  • Kwon, H.;Lee, Y.H.;Kim, J.M.;Kim, K.W.;Park, Y.K.
    • Progress in Superconductivity
    • /
    • v.4 no.1
    • /
    • pp.19-26
    • /
    • 2002
  • We have earlier developed a 40-channel SQUID system. An important figure of merit of a MEG system is the localization error, within which the underlying current source can be localized. With this system, we investigated the localization error in terms of the standard deviation of the coordinates of the ECDs and the systematic error due to inadequate modeling. To do this, we made localization of single current dipoles from tangential components of auditory evoked fields. Equivalent current dipoles (ECD) at N1m peak were estimated based on a locally fitted spherical conductor model. In addition, we made skull phantom and simulation measurements to investigate the contribution of various errors to the localization error. It was found that the background noise was the main source of the errors that could explain the observed standard deviation. Further, the amount of systematic error, when modeling the head with a spherical conductor, was much less than the standard deviation due to the background noise. We also demonstrated the performance of the system by measuring the evoked fields to grammatical violation in sentence comprehension.

  • PDF

Automation of the Parameter Measurement of D.C. Servomotors Using a Microcomputer (마이크로 컴퓨터를 이용한 직류 서어보전동기의 파라미터 측정의 자동화)

  • Chung, Hee-Young;Park, Gwi-T.;Lim, Young-H.;Jang, Young-H.;Cho, Kyeung-Y.
    • Proceedings of the KIEE Conference
    • /
    • 1989.07a
    • /
    • pp.12-15
    • /
    • 1989
  • This paper describes the efforts to develop an PC based parameter identification system for the D.C. servomotor. The whole identification process of signal generation, measuring, parameter determination is fully automated. To minimize errors due to the ripple component in the measured armature current, digital averaging filter is employed. The proposed parameter correction method using the deadzone current and the time to reach the peak current resulted in excellent agreement between the measured current and estimated current using the model.

  • PDF

The transient grounding impedance measurment of large grid grounding electrodes (대규모 그리드 접지전극의 과도접지임피던스의 측정)

  • Jeon, Byung-Wook;Lee, Su-Bong;Li, Feng;Lee, Seung-Ju;Jung, Dong-Cheol;Lee, Bok-Hee
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2008.10a
    • /
    • pp.69-72
    • /
    • 2008
  • This paper presents the transient and conventional grounding impedance behaviors of large grid grounding system associated with the injection point of impulse current The measurement methods consider two possible errors in the grounding-system impedances: (1) ground mutual resistance due to current flow through ground from the ground electrode to be measured to the current auxiliary, (2) ac mutual coupling between the current test lead and the potential test lead The test circuit was set to reduce the error factors. The transient grounding impedance depends on the rise time and injection point of impulse current It is effective that grounding conductor is connected to the center of the large grid grounding system.

  • PDF

Computational Justification of Current Distribution Measurement Technique Via Segmenting Bipolar Plate in Fuel Cells (분리판 분할을 통만 연료전지의 전류분포 측정법에 대한 수치적 검증)

  • Choi, Yong-Jun;Lee, Gi-Yong;Kang, Kyung-Mun;Kim, Whan-Gi;Ju, Hyun-Chul
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.21 no.1
    • /
    • pp.1-11
    • /
    • 2010
  • Current distribution measurement technique based on a segmented bipolar plate (BP) has been widely adopted to visualize the distribution of current density in a polymer electrolyte membrane. However, a concern is raised how closely the current density of a segmented BP can approach that of a corresponding non-segmented membrane. Therefore, in this paper, the accuracy of the measurement technique is numerically evaluated by applying a three-dimensional, two-phase fuel cell model to a $100\;cm^2$ area fuel cell geometry in which segmented BPs and non-segmented membrane are combined together. The simulation results reveal that the errors between the current densities of the segmented BPs and non-segmented membrane indeed exist, predicting the maximum relative error of 33% near the U-turn regions of the flow-field. The numerical study further illustrates that the erroneous result originates from the BPs segmented non-symmetrically based on the flow channels that allows some currents bypassing flow channels to flow into its neighboring segment. Finally, this paper suggests the optimal way for bipolar plate segmentation that can minimize the deviation of current measured in a segmented BP from that of a corresponding membrane region.

Measurement and Analysis of Ground Impedance according to Arrangement of Auxiliary Probe around Ground Grid (접지 그리드에서의 보조전극 배치에 따른 접지임피던스 측정 및 분석)

  • Gil, Hyoung-Jun;Shong, Kil-Mok;Kim, Young-Seok;Kim, Chong-Min
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.4
    • /
    • pp.46-50
    • /
    • 2015
  • This paper describes the measurement and analysis of ground impedance according to arrangement of auxiliary probe around ground grid using the fall-of-potential method and the testing techniques to minimize the measuring errors are proposed. The fall-of-potential method involves passing a current between a ground electrode and a current probe, and then measuring the voltage between a ground electrode and a potential probe. To minimize interelectrode influences due to mutual resistances, the current probe is a generally placed at a substantial distance from the ground electrode under test. In order to analyze the effects of ground impedance due to the arrangement of auxiliary probe and frequency, ground impedances were measured in case that the arrangements of auxiliary probe were straight line, perpendicular line, and horizontal line. The distance of current probe was located from 10[m] to 200[m] and the measuring frequency was ranged from 55[Hz] to 513[Hz]. As a consequence, the ground impedance increases with increasing the distance from the ground electrode to the point to be tested, but the ground impedance decreases with increasing the frequency.

Measurement of High Voltage and Large Current Pulse Using Laser System (레이저를 이용한 펄스형 고전압 및 대전류 측정)

  • Lee, Yoon-Seok;Chang, Yong-Moo;Kim, Jung-Tae;Koo, Ja-Yoon;Kang, Hyung-Boo
    • Proceedings of the KIEE Conference
    • /
    • 1991.07a
    • /
    • pp.314-317
    • /
    • 1991
  • The waveforms of high voltage and current pulse were measured using laser measuring systems. Existing potential transformer and current transformer have low measuring precision because of resonance phenomena and waveform distortion due to the magnetic saturation. But using laser measurement, it is possible to obtain clear waveforms which have no effect of distortion and harmonic resonances. And electromagnetic interferences (EMI) in the measuring of high voltage and current pulse, but the optical measuring systems are not subjet to the influence of EMI. Using laser measuring systems based upon Pockels effect and Faraday effect is not free from any errors yet, but it could replace existing measuring systems by routine experiments and error corrections. And it needs that more research and development of optical crystals and equipments would be taken.

  • PDF