• Title/Summary/Keyword: Current forces

Search Result 697, Processing Time 0.025 seconds

A Study of Wave and Current Forces on Cylinders (실린더에 작용하는 파력 및 조류력에 관한 연구)

  • 박광동;조효제;구자삼
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.4
    • /
    • pp.14-19
    • /
    • 2001
  • In this paper, the wave and current forces acting on cylinders are investigated by theoretical and experimental methods. The models used are one-cylinder, four-cylinder and semi-submersible types. The theoretical investigations are carried out by the Morison equation and three dimensional source distribution method to calculate exciting forces in waves with and without currents. The experimental investigations are carried out in the wave tank which can generate currents in both directions. In these tests, the models have been exposed to the regular waves with and without currents. It is shown that the exciting forces acting on the one-cylinder or four-cylinders can be approximately estimated by the Morison equation and also by the diffraction theory. However, the Morison equation seems to be not appropriate to estimate the exciting forces on the present type of semi-submersible.

  • PDF

Nonlinear Motion Analysis of FPSO with Turret Mooring System (터렛계류된 FPSO의 비선형 운동 해석)

  • 임춘규;이호영
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.40 no.1
    • /
    • pp.20-27
    • /
    • 2003
  • The FPSO is moored by mooring lines to keep the position of it. The nonlinear motion analysis of the moored FPSO must be carried out in the initial design stage because sea environments affect motion of it. In this paper, the mathematical model is based on the slow motion maneuvering equations in the horizontal plane considering wave, current and wind forces. The direct integration method is employed to estimate wave loads. The current forces are calculated by using mathematical model of MMG. The turret mooring forces are quasi-statically evaluated by using the catenary equation. The coefficients of a model for wind forces are calculated from Isherwood's experimental data and the variation of wind speed is estimated by wind spectrum according to the guidelines of API-RP2A. The nonlinear motions of FPSO are simulated under external forces due to wave, current, wind including mooring forces in time domain.

Dynamic responses of a freestanding bridge tower under wave and wave-current loads

  • Wei, Chengxun;Wang, Wenjing;Zhou, Daocheng
    • Structural Engineering and Mechanics
    • /
    • v.82 no.4
    • /
    • pp.491-502
    • /
    • 2022
  • A model experiment with a scale of 1:150 has been conducted to investigate the dynamic responses of a freestanding four-column bridge tower subjected to regular wave, random wave and coupled wave-current actions. The base shear forces of the caisson foundation and the dynamic behaviors of the superstructure were measured and analyzed. The comparisons of the test values with the theoretical values shows that wave-induced base shear forces on the bridge caisson foundation can be approximated by using a wave force calculation method in which the structure is assumed to be fixed and rigid. Although the mean square errors of the base shear forces excited by joint random wave and current actions are approximately equal to those excited by pure random waves, the existence of a forward current increases the forward base shear forces and decreases the backward base shear forces. The tower top displacements excited by wave-currents are similar to those excited by waves, suggesting that a current does not significantly affect the dynamic responses of the superstructure of the bridge tower. The experiment results can be used as a reference for similar engineering design.

Analysis of the Driving Characteristics in the Magnetic Fluid Linear Pump by Operating Current (동작 전류에 의한 Magnetic fluid Linear Pump의 동특성 해석)

  • Seo, Kang;Park, Gwan-Soo
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.4
    • /
    • pp.237-246
    • /
    • 2004
  • The advantages of the Magnetic Fluid Linear Pump(MFLP) is that this device could Pump the non-conductive. non-magnetic liquid such as Insulin or blood because of the segregation structure of the magnetic fluid and pumping liquid. In this device. the sequential currents are needed to Produce pumping forces so that Pumping Forces and Pumping speed mainly depend on the current Patterns. The excessive forces at Pumping moment could cause the medical shock, and weak forces at intermediate moment could cause the back flow or the pumping liquid. So the ripples of the pumping forces need to be reduced for the medical application. In this research, the driving characteristics in the MFLP by operating current is analysed. The change of magnetic fluid surface according to the driving currents could be obtained be magneto-hydrodynamic analysis so that Pumping fortes could be computed by integration of the surface moving to the pumping direction at each moment. The actual MFLP with 13mm diameter was made and tested for experiments. The effects of driving current and frequency on the pumping forces and pumping speed were analyzed and compared with experimental measurements.

Analysis of Electromagnetic Repulse Forces of MCCB (배선용 차단기의 전자 반발력에 관한 연구)

  • 김길수;임기조;강성화;조현길
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.593-596
    • /
    • 2001
  • It is necessary for calculation of repulsion forces acting on the closed electric contacts flowing over-current, e.g. inrush current and overload currents, to do optimum design of switching devices. In this paper, the farces and flux densities generated by currents at the contact point when circuit breakers are in closed state are obtained by using 3D finite element methode. To be convinced of the results, we measure electrogmanetic repulsion forces on contacts by measuring voltage between opened contacts in MCCB.

  • PDF

Nonlinear Motion Responses of a Moored Ship beside Quay (안벽에 계류된 선박의 비선형 운동응답)

  • 이호영;임춘규;유재문;전인식
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.4
    • /
    • pp.8-15
    • /
    • 2003
  • When a typoon sets into harbour, a moored ship shows erratic motions and even mooring line failure may occur. such troubles may be caused by harbour resonance phenomena, resulting in large motion amplitudes at low frequency, which is close ti the natural frequency of th moored ship. The nonlinear motions of a ship moored to quay are simulated under external forces due to wave, current including mooring forces in time domain. The forces due to waves are obtained from source and dipole distribution method in the frequency domain. The current forces are calculated by using slow motion maneuvering equation in the horizontal plane. The wind forces are calculated from the empirical formula of ABS and the mooring forces of ropes and fenders are modeled as linear spring.

The assessment of Safe Navigation Regarding Hydrodynamic forces between ships in Restricted Waterways

  • Lee, Chun-Ki;Yun, Jong-Hwui;Yoon, Jeom-Dong
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2006.11a
    • /
    • pp.143-149
    • /
    • 2006
  • This paper is primarily focused on the safe navigation between overtaking and overtaken vesselsin restricted waterways under the external forces, such as wind and current. The maneuvering simulation between two ships was conducted to find an appropriate safe speed and distance, which is required to avoid collision. From the viewpoint of marine safety, a greater transversedistance between two ships is more needed for the smaller vessel. Regardless of external forces, the smaller vessel will get a greater effect of hydrodynamic forces than the higher one. In the case of close navigation between ships under the forces of wind and current, the vessel moving at a lower speed is potentially hazardous because the rudder force of the lower speed vessel is not sufficient for steady-state course-keeping, compared to that of the higher speed vessel.

  • PDF

The Assessment of Safe Navigation Regarding Hydrodynamic forces between Ships in Restricted Waterways

  • Lee, Chun-Ki;Lee, Sam-Goo
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.11
    • /
    • pp.2002-2009
    • /
    • 2006
  • This paper is primarily focused on the safe navigation between overtaking and overtaken vessels in restricted waterways under the external forces, such as wind and current. The maneuvering simulation between two ships was conducted to find an appropriate safe speed and distance, which is required to avoid collision. From the viewpoint of marine safety, a greater transverse distance between two ships is more needed for the smaller vessel. Regardless of external forces, the smaller vessel will get a greater effect of hydrodynamic forces than the bigger one. In the case of close navigation between ships under the forces of wind and current, the vessel moving at a lower speed is potentially hazardous because the rudder force of the lower speed vessel is not sufficient for steady-state course-keeping, compared to that of the higher speed vessel.

The assessment of Safe Navigation Regarding Hydrodynamic forces between ships in Restricted Waterways

  • Lee, Chun-Ki;Yoon, Jeom-Dong
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.89-93
    • /
    • 2006
  • This paper is primarily focused on the safe navigation between overtaking and overtaken vessels in restricted waterways under the external forces, such as wind and current. The maneuvering simulation between two ships was conducted to find an appropriate safe speed and distance, which is required to avoid collision. From the viewpoint of marine safety, a greater transverse distance between two ships is more needed for the smaller vessel. Regardless of external forces, the smaller vessel will get a greater effect of hydrodynamic forces than the bigger one. In the case of close navigation between ships under the forces of wind and current, the vessel moving at a lower speed is potentially hazardous because the rudder force of the lower speed vessel is not sufficient for steady-state course-keeping, compared to that of the higher speed vessel.

  • PDF

Nonlinear Motion Analysis of FPSO with Turret Mooring System (터렛계류된 FPSO의 비선형 운동 해석)

  • Lim, Choon-Gyu;Lee, Ho-Young
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.161-166
    • /
    • 2002
  • As offshore oil fields move towards the deep ocean, the oil production systems such as FPSO are being built these days. Generally, the FPSO is moored by turret mooring lines to keep the position of FPSO. Thus nonlinear motion analysis of moored FPSO must be carried out in the initial design stage because sea environments affect motion of it. In this paper the mathematical model is based on the slow motion maneuvering equations in the horizontal plane considering wave, current and wind forces. The direct integration method is employed to estimate wave loads. The current forces are calculated by using mathematical model of MMG. The turret mooring forces are quasi-statically evaluated by using the catenary equation. The coefficients of a model for wind forces are calculated from Isherwood's experimental data and the variation of wind speed is estimated by wind spectrum according to the guidelines of API-RP2A. The nonlinear motions of FPSO are simulated under external forces due to wave, current, wind including mooring forces in time domain.

  • PDF